PDE Tutorial#
Welcome to the PDE tutorial.
Homesite: https://jonshiach.github.io/files/notes/finite_difference_methods_notes.pdf
Course: Numerical Methods for Partial Differential Equations II
Recordings:
Contents#
The Finite Difference Method
- 1. Partial Differential Equations
 - 2. Finite-Difference Approximations
 - 3. Elliptic Partial Differential Equations
 - 4. octave
 - 5. pystencils
 - 6. Introduction to JAX
 - 7. finitediffx
 - 8. kernex
 - 9. 
py-pdetutorial - 10. 
findifftutorial - 11. Symbolic 
findiff - 12. Solve with 
findiff - 13. 
AdvectionPer.m - 14. 
DiffusionCrankNic.m - 15. Advection pystencils example
 - 16. 1D heat diffusion
 
The Finite Volume Method
The Mimetic Finite Difference Method
Simulating Fluid Flows Using Python
- 17. Introduction to Computational Fluid Dynamics
 - 18. Finite Differences - First Derivative
 - 19. Polynomial derivative estimation
 - 20. Finite differences in Python
 - 21. Second derivative - 1D heat conduction
 - 22. Introduction to Finite Volume Method
 - 23. CFD Relevant Python Statements | While | For
 - 24. Conduction Visualization Python Script
 - 25. Generalized FVM Formulation
 - 26. 0
 
Computers, Waves, Simulations
- 27. First Derivative
 - 28. Second Derivative
 - 29. High-Order Taylor Operators
 - 30. Acoustic Waves 1D I
 - 31. Acoustic Waves 1D II
 - 32. Acoustic Waves 1D - Optimal Operators
 - 33. Acoustic Waves 2D - Heterogeneous case
 - 34. Acoustic Waves 2D - Homogeneous case
 - 35. Advection equation 1D
 - 36. Grid-Staggering Elastic 1D
 - 37. The Pseudo-Spectral Method - Numerical Derivatives based on a Derivative Matrix
 - 38. The Pseudo-Spectral Method - Elastic Wave Equation 1D
 - 39. The Pseudo-Spectral Method - Acoustic Waves in 1D
 - 40. The Pseudo-Spectral Method - Acoustic Waves in 2D
 - 41. The Finite Element Method - Static Elasticity
 - 42. The Finite Element Method - Elastic Wave Equation 1D
 - 43. The Spectral Element Method - Interpolation with Lagrange Polynomials
 - 44. The Spectral Element Method - Numerical Integration - The Gauss-Lobatto-Legendre approach
 - 45. Spectral Element Method - Elastic Wave Equation 1D, Heterogeneous case
 - 46. Spectral Element Method - Elastic Wave Equation 1D - Homogeneous Case
 
Differential equations and Fourier analysis
- 47. Fourier series: supplemental material
 - 48. Polynomial interpolation: Lagrange interpolation
 - 49. Introduction
 - 50. Methods
 - 51. Numerical solution of ordinary differential equations: High order Runge-Kutta methods
 - 52. Runge-Kutta Methods
 - 53. Finite difference methods for two-point value problems
 - 54. \begin{align} -\partial^+\partial^- U_i
 - 55. \begin{align} \dfrac{1}{h^2} \underbrace{ \begin{bmatrix} -1 & 2 & -1 & & & \ & -1 & 2 & -1 & & \ & & -1 & 2 & -1 & & \ & & & \ddots &\ddots & \ddots & \ & & & & -1 & 2 & -1 \end{bmatrix} }{\widetilde{A}} \underbrace{ \begin{bmatrix} U_0 \ U_1 \ U_2 \ U_3 \ \vdots \ U{N} \end{bmatrix} }_{\widetilde{U}}
 - 56. \begin{align} \dfrac{1}{h^2} \underbrace{ \begin{bmatrix} h^2 \ -1 & 2 & -1 & & & \ & -1 & 2 & -1 & & \ & & -1 & 2 & -1 & & \ & & & \ddots &\ddots & \ddots & \ & & & & -1 & 2 & -1 \ & & & & & & h^2 \end{bmatrix} } \underbrace{ \begin{bmatrix} U_0 \ U_1 \ U_2 \ U_3 \ \vdots \ U{N-1} \ U_{N} \end{bmatrix} }_
 - 57. Numerical integration: Part II
 - 58. General construction of quadrature rules
 - 59. Constructing quadrature rules on a single interval
 - 60. Composite quadrature rules
 - 61. Numerical integration: Part IV
 - 62. Newton-Cotes formulas
 - 63. Gauß quadrature
 - 64. Introduction to TMA4125
 - 65. Taylor-expansions
 - 66. Some other useful results
 - 67. A simple epidemic model for Covid 19 and its numerical solution
 - 68. Numerical solution of ordinary differential equations: One step methods
 - 69. One Step Methods
 - 70. Introduction to TMA4125
 - 71. Taylor-expansions
 - 72. Some other useful results
 - 73. Polynomial interpolation: Newton interpolation
 - 74. Numerical integration
 - 75. Introduction
 - 76. Quadrature based on polynomial interpolation.
 - 77. Degree of exactness and an estimate of the quadrature error
 - 78. Polynomial interpolation: Error theory
 - 79. Theory
 - 80. Numerical solution of ordinary differential equations: Euler’s and Heun’s method
 - 81. Introduction: Whetting your appetite
 - 82. Euler’s method
 - 83. Heun’s method
 - 84. Applying Heun’s and Euler’s method
 - 85. Bibliography
 - 86. Numerical methods for the heat equation
 
Finite Difference Computing with PDEs
End Matter