Heidelberg Educational Numerics Library Version 0.27 (from 15 March 2021)
Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 123]
 Chdnum::BanachSolve nonlinear problem using a fixed point iteration
 Chdnum::SparseMatrix< REAL >::builder
 Chdnum::SparseMatrix< REAL >::column_index_iterator
 Chdnum::SparseMatrix< REAL >::const_column_index_iterator
 Chdnum::SparseMatrix< REAL >::const_row_iterator
 Chdnum::oc::OpCounter< F >::CountersStruct storing the number of operations
 Chdnum::DenseMatrix< REAL >Class with mathematical matrix operations
 Chdnum::DenseMatrix< number_type >
 Chdnum::DIRK< M, S >Implementation of a general Diagonal Implicit Runge-Kutta method
 Chdnum::EE< M >Explicit Euler method as an example for an ODE solver
 Chdnum::ExceptionBase class for Exceptions
 Chdnum::ErrorExceptionGeneral Error
 Chdnum::IOErrorDefault exception class for I/O errors
 Chdnum::InvalidStateExceptionDefault exception if a function was called while the object is not in a valid state for that function
 Chdnum::MathErrorDefault exception class for mathematical errors
 Chdnum::NotImplementedDefault exception for dummy implementations
 Chdnum::RangeErrorDefault exception class for range errors
 Chdnum::SystemErrorDefault exception class for OS errors
 Chdnum::OutOfMemoryErrorDefault exception if memory allocation fails
 Chdnum::TimerErrorException thrown by the Timer class
 Chdnum::GenericNonlinearProblem< Lambda, Vec >A generic problem class that can be set up with a lambda defining F(x)=0
 Chdnum::Heun2< M >Heun method (order 2 with 2 stages)
 Chdnum::Heun3< M >Heun method (order 3 with 3 stages)
 Chdnum::IE< M, S >Implicit Euler using Newton's method to solve nonlinear system
 Chdnum::ImplicitRungeKuttaStepProblem< M >Nonlinear problem we need to solve to do one step of an implicit Runge Kutta method
 Chdnum::Kutta3< M >Kutta method (order 3 with 3 stages)
 Chdnum::ModifiedEuler< M >Modified Euler method (order 2 with 2 stages)
 Chdnum::NewtonSolve nonlinear problem using a damped Newton method
 Chdnum::oc::OpCounter< F >
 Chdnum::RE< M, S >Adaptive one-step method using Richardson extrapolation
 Chdnum::RKF45< M >Adaptive Runge-Kutta-Fehlberg method
 Chdnum::SparseMatrix< REAL >::row_iterator
 Chdnum::RungeKutta< M, S >Classical Runge-Kutta method (order n with n stages)
 Chdnum::RungeKutta4< M >Classical Runge-Kutta method (order 4 with 4 stages)
 Chdnum::SGrid< N, DF, dimension >Structured Grid for Finite Differences
 Chdnum::SparseMatrix< REAL >Sparse matrix Class with mathematical matrix operations
 Chdnum::SquareRootProblem< N >Example class for a nonlinear model F(x) = 0;
 Chdnum::StationarySolver< M >Stationary problem solver. E.g. for elliptic problmes
 Chdnum::TimerA simple stop watch
 Cstd::vector
 Chdnum::Vector< number_type >
 Chdnum::Vector< hdnum::Vector< number_type > >
 Chdnum::Vector< size_type >
 Chdnum::Vector< REAL >Class with mathematical vector operations