|
Heidelberg Educational Numerics Library Version 0.27 (from 15 March 2021)
|
| Chdnum::Banach | Solve nonlinear problem using a fixed point iteration |
| Chdnum::SparseMatrix< REAL >::builder | |
| Chdnum::SparseMatrix< REAL >::column_index_iterator | |
| Chdnum::SparseMatrix< REAL >::const_column_index_iterator | |
| Chdnum::SparseMatrix< REAL >::const_row_iterator | |
| Chdnum::oc::OpCounter< F >::Counters | Struct storing the number of operations |
| Chdnum::DenseMatrix< REAL > | Class with mathematical matrix operations |
| Chdnum::DenseMatrix< number_type > | |
| Chdnum::DIRK< M, S > | Implementation of a general Diagonal Implicit Runge-Kutta method |
| Chdnum::EE< M > | Explicit Euler method as an example for an ODE solver |
| ▼Chdnum::Exception | Base class for Exceptions |
| Chdnum::ErrorException | General Error |
| Chdnum::IOError | Default exception class for I/O errors |
| Chdnum::InvalidStateException | Default exception if a function was called while the object is not in a valid state for that function |
| Chdnum::MathError | Default exception class for mathematical errors |
| Chdnum::NotImplemented | Default exception for dummy implementations |
| Chdnum::RangeError | Default exception class for range errors |
| ▼Chdnum::SystemError | Default exception class for OS errors |
| Chdnum::OutOfMemoryError | Default exception if memory allocation fails |
| Chdnum::TimerError | Exception thrown by the Timer class |
| Chdnum::GenericNonlinearProblem< Lambda, Vec > | A generic problem class that can be set up with a lambda defining F(x)=0 |
| Chdnum::Heun2< M > | Heun method (order 2 with 2 stages) |
| Chdnum::Heun3< M > | Heun method (order 3 with 3 stages) |
| Chdnum::IE< M, S > | Implicit Euler using Newton's method to solve nonlinear system |
| Chdnum::ImplicitRungeKuttaStepProblem< M > | Nonlinear problem we need to solve to do one step of an implicit Runge Kutta method |
| Chdnum::Kutta3< M > | Kutta method (order 3 with 3 stages) |
| Chdnum::ModifiedEuler< M > | Modified Euler method (order 2 with 2 stages) |
| Chdnum::Newton | Solve nonlinear problem using a damped Newton method |
| Chdnum::oc::OpCounter< F > | |
| Chdnum::RE< M, S > | Adaptive one-step method using Richardson extrapolation |
| Chdnum::RKF45< M > | Adaptive Runge-Kutta-Fehlberg method |
| Chdnum::SparseMatrix< REAL >::row_iterator | |
| Chdnum::RungeKutta< M, S > | Classical Runge-Kutta method (order n with n stages) |
| Chdnum::RungeKutta4< M > | Classical Runge-Kutta method (order 4 with 4 stages) |
| Chdnum::SGrid< N, DF, dimension > | Structured Grid for Finite Differences |
| Chdnum::SparseMatrix< REAL > | Sparse matrix Class with mathematical matrix operations |
| Chdnum::SquareRootProblem< N > | Example class for a nonlinear model F(x) = 0; |
| Chdnum::StationarySolver< M > | Stationary problem solver. E.g. for elliptic problmes |
| Chdnum::Timer | A simple stop watch |
| ▼Cstd::vector | |
| Chdnum::Vector< number_type > | |
| Chdnum::Vector< hdnum::Vector< number_type > > | |
| Chdnum::Vector< size_type > | |
| Chdnum::Vector< REAL > | Class with mathematical vector operations |