Heidelberg Educational Numerics Library Version 0.27 (from 15 March 2021)
|
Implicit Euler using Newton's method to solve nonlinear system. More...
#include <ode.hh>
Public Types | |
typedef M::size_type | size_type |
export size_type | |
typedef M::time_type | time_type |
export time_type | |
typedef M::number_type | number_type |
export number_type | |
Public Member Functions | |
IE (const M &model_, const S &newton_) | |
constructor stores reference to the model | |
void | set_dt (time_type dt_) |
set time step for subsequent steps | |
void | set_verbosity (size_type verbosity_) |
set verbosity level | |
void | step () |
do one step | |
bool | get_error () const |
get current state | |
void | set_state (time_type t_, const Vector< number_type > &u_) |
set current state | |
const Vector< number_type > & | get_state () const |
get current state | |
time_type | get_time () const |
get current time | |
time_type | get_dt () const |
get dt used in last step (i.e. to compute current state) | |
size_type | get_order () const |
return consistency order of the method | |
void | get_info () const |
print some information | |
Implicit Euler using Newton's method to solve nonlinear system.
The ODE solver is parametrized by a model. The model also exports all relevant types for time and states. The ODE solver encapsulates the states needed for the computation.
M | the model type |
S | nonlinear solver |