ParaView Users Guide Documentation
Release 5.12.0

ParaView Developers

Apr 19, 2024

PARAVIEW USER’S GUIDE

1 ParaView User’s Guide

1.1 Introductionto ParaView
1.2 LoadingData e e e e e e e e
1.3 Understanding Data e e
1.4 Displayingdata e e e e e e e e e e e
1.5 Filtering Data e e e e e e e e
1.6 Selecting Data e e e e e e e
1.7 Animation e e e e e e e e e e
1.8 Saving Results e e e
ParaView Reference Manual

2.1 Properties Panel L e e
2.2 Object Shading Properties o e
2.3 Color maps and transfer functions L e e e
2.4 Comparative visualization L e e e e e e e
2.5 Programmable Filter e
2.6 Using NumPy for processingdata e
2.7 Remote and parallel visualization
2.8 Memory InSpector L e e e e e e e
2.9 Multiblock InSpector e e e e e e e e e e e e
2,10 AnnotationS e e e e e e e e e e e e e
201 AxesGrid o e e e e e e e
2.12 Customizing ParaView oL e e
Catalyst

3.1 Getting Started L. e e e e e e e e e e
3.2 Backgroundo e e e e
3.3 ParaView-Catalyst Blueprint e
34 FidesReader e
3.5 Examples for Simulation Developers e
3.6 Debugging Tips o e e
ParaView Tutorials

4.1 Self-directed Tutorial e
42 Classroom Tutorials 0 o e e e e e e e e
References

Documentation Source

Bibliography

297
297
300
301
304
304
304

305
305
412

541

543

545

ParaView Users Guide Documentation, Release 5.12.0

This guide is split into several volumes:
» User’s Guide’s Section 1.1 to Section 1.8 cover various aspects of data analysis and visualization with ParaView.

* Reference Manual’s Section 2.1 to Section 2.12 provide details on various components in the Ul and the script-
ing APL

 Catalyst: Instructions on how to use ParaView’s implementation of the Catalyst APL
¢ Tutorials are split into Self-directed Tutorial and Classroom Tutorials:

— Self-directed Tutorial’s Section 4.1.1 to Section 4.1.5 provide an introduction to the ParaView software
and its history, and exercises on how to use ParaView that cover basic usage, batch Python scripting and
visualizing large models.

— Classroom Tutorials’s Section 4.2.1 to Section 4.2.18 provide beginning, advanced, Python and batch,
and targeted tutorial lessons on how to use ParaView that are presented as a 3-hour class internally within
Sandia National Laboratories.

PARAVIEW USER’S GUIDE 1

ParaView Users Guide Documentation, Release 5.12.0

2 PARAVIEW USER’S GUIDE

CHAPTER
ONE

PARAVIEW USER’S GUIDE

1.1 Introduction to ParaView

1.1.1 Introduction

ParaView is an open-source, multi-platform scientific data analysis and visualization tool that enables analysis and
visualization of extremely large datasets. ParaView is both a general purpose, end-user application with a distributed
architecture that can be seamlessly leveraged by your desktop or other remote parallel computing resources and an
extensible framework with a collection of tools and libraries for various applications including scripting (using Python),
web visualization (through trame and ParaViewWeb), or in-situ analysis (with Catalyst).

ParaView leverages parallel data processing and rendering to enable interactive visualization for extremely large
datasets. It also includes support for large displays including tiled displays and immersive 3D displays with head
tracking and wand control capabilities.

ParaView also supports scripting and batch processing using Python. Using included Python modules, you can write
scripts that can perform almost all the functionality exposed by the interactive application and much more.

ParaView is open-source (BSD licensed, commercial software friendly). As with any successful open-source project,
ParaView is supported by an active user and developer community. Contributions to both the code and this user’s
manual that help make the tool and the documentation better are always welcome.

Did you know?

The ParaView project started in 2000 as a collaborative effort between Kitware Inc. and LANL (Los Alamos National
Labs). The initial funding was provided by a three year contract with the US Department of Energy ASCI Views
program. The first public release, ParaView 0.6, was announced in October 2002.

Independent of ParaView, Kitware started developing a web-based visualization system in December 2001. This
project was funded by Phase I and II SBIRs from the US ARL (Arm Research Laboratory) and eventually became the
PVEE (ParaView Enterprise Edition). PVEE significantly contributed to the development of ParaView’s client/server
architecture. PVEE was the precursor to ParaViewWeb, a modern web visualization solution based on ParaView.

Since the project began, Kitware has successfully collaborated with Sandia, LANL, the ARL, and various other aca-
demic and government institutions to continue development. Today, the project is still going strong!

In September 2005, Kitware, Sandia National Labs and CSimSoft started the development of ParaView 3.0. This was
a major effort focused on rewriting the user interface to be more user friendly and on developing a quantitative analysis
framework. ParaView 3.0 was released in May 2007.

https://kitware.github.io/trame/

ParaView Users Guide Documentation, Release 5.12.0

In this guide

This user’s manual is designed as a guide for using the ParaView application. It is geared toward users who have
a general understanding of common data visualization techniques. For scripting, a working knowledge of the Python
language is assumed. If you are new to Python, there are several tutorials and guides for getting started that are available
on the Internet.

Did You Know?

In this guide, we will periodically use these Did you know? boxes to provide additional information related to the topic
at hand.

Common Errors

Common Errors blocks are used to highlight some of the common problems or complications you may run into when
dealing with the topic of discussion.

This guide is split into several volumes:
» User’s Guide’s Section 1.1 to Section 1.8 cover various aspects of data analysis and visualization with ParaView.

* Reference Manual’s Section 2.1 to Section 2.12 provide details on various components in the UI and the script-
ing APIL

« Catalyst: Instructions on how to use ParaView’s implementation of the Catalyst APL
* Tutorials are split into Self-directed Tutorial and Classroom Tutorials:

— Self-directed Tutorial’s Section 4.1.1 to Section 4.1.5 provide an introduction to the ParaView software
and its history, and exercises on how to use ParaView that cover basic usage, batch python scripting and
visualizing large models.

— Classroom Tutorials’s Section 4.2.1 to Section 4.2.18 provide beginning, advanced, python and batch,
and targeted tutorial lessons on how to use ParaView that are presented as a 3-hour class internally within
Sandia National Laboratories.

Getting help

This guide tries to cover most of the commonly used functionality in ParaView. ParaView’s flexible, pipeline-based
architecture opens up numerous possibilities. If you find yourself looking for some feature not covered in this guide,
refer to the Wiki pages or to the ParaView Discourse forum, specially the FAQ and the Tips and Tricks categories. Also
feel free to ask about it under the relevant Support category.

Getting the software

ParaView is open source. The complete source code for all the functionality discussed in The ParaView Guide can be
downloaded from the ParaView website http://www.paraview.org. We also provide binaries for the major platforms:
Linux, macOS, and Windows. You can get the source files and binaries for the official releases, and follow ParaView’s
active development by downloading the nightly builds.

Providing details of how to build ParaView using the source files is beyond the scope of this guide. Refer to the Par-
aView gitlab (https://gitlab.kitware.com/paraview/paraview/-/blob/master/Documentation/dev/build.md) for more in-
formation.

4 Chapter 1. ParaView User’s Guide

http://paraview.org/Wiki/ParaView
https://discourse.paraview.org/
https://discourse.paraview.org/c/faq/13
https://discourse.paraview.org/c/tips-and-tricks/9
https://discourse.paraview.org/c/paraview-support/7
http://www.paraview.org
https://gitlab.kitware.com/paraview/paraview/-/blob/master/Documentation/dev/build.md

ParaView Users Guide Documentation, Release 5.12.0

1.1.2 Basics of visualization in ParaView

input
(B)
output
dataset A dataset B

Fig. 1.1: Visualization model: Process objects A, B, and C input and/or output one or more data objects. Data objects
represent and provide access to data; process objects operate on the data. Objects A, B, and C are source, filter, and
mapper objects, respectively. [SMLI6]

Visualization is the process of converting raw data into images and renderings to gain a better cognitive understanding of
the data. ParaView uses VTK, the Visualization Toolkit, to provide the backbone for visualization and data processing.

The VTK model is based on the data-flow paradigm. In this paradigm, data flows through the system being transformed
at each step by modules known as algorithms. Algorithms could be common operations such as clipping, slicing, or
generating contours from the data, or they could be computing derived quantities, etc. Algorithms have input ports
through which they take in data and output ports through which they produce output. You need producers that ingest
data into the system. These are simply algorithms that do not have an input port but have one or more output ports. They
are called sources . Readers that read data from files are examples of such sources. Additionally, there are algorithms
that transform the data into graphics primitives so that they can be rendered on a computer screen or saved to disk
in another file. These algorithms, which have one or more input ports but do not have output ports, are called sinks
. Intermediate algorithms with input ports and output ports are called filters . Together, sources, filters, and sinks
provide a flexible infrastructure wherein you can create complex processing pipelines by simply connecting algorithms
to perform arbitrarily complex tasks.

For more information on VTK’s programming model, refer to [SML96].

This way of looking at the visualization pipeline is at the core of ParaView’s work flow: You bring your data into the
system by creating a reader — the source. You then apply filters to either extract information (e.g., iso-contours) and
render the results in a view or to save the data to disk using writers — the sinks.

ParaView includes readers for a multitude of file formats typically used in the computational science world. To effi-
ciently represent data from various fields with varying characteristics, VTK provides a rich data model that ParaView
uses. The data model can be thought of simply as ways of representing data in memory. We will cover the different
data types in more detail in Section 1.3.1. Readers produce a data type suitable for representing the information the
files contain. Based on the data type, ParaView allows you to create and apply filters to transform the data. You can
also show the data in a view to produce images or renderings. Just as there are several types of filters, each perfoming
different operations and types of processing, there are several kinds of views for generating various types of renderings
including 3D surface views, 2D bar and line views, parallel coordinate views, etc.

Did You Know?

The Visualization Toolkit (VTK) is an open-source, freely available software system for 3D computer graphics, mod-
eling, image processing, volume rendering, scientific visualization, and information visualization. VTK also includes
ancillary support for 3D interaction widgets, two and three-dimensional annotation, and parallel computing.

1.1. Introduction to ParaView 5

ParaView Users Guide Documentation, Release 5.12.0

At its core, VTK is implemented as a C++ toolkit, requiring users to build applications by combining various objects
into an application. The system also supports automated wrapping of the C++ core into Python and Java so that VTK
applications may also be written using these programming languages. VTK is used world-wide in commercial appli-
cations, research and development, and as the basis of many advanced visualization applications such as ParaView,
Vislt, VisTrails, Slicer, MayaVi, and OsiriX.

1.1.3 ParaView executables

ParaView comes with several executables that serve different purposes.

paraview

This is the main ParaView graphical user interface (GUI). In most cases, when we refer to ParaView, we are in-
deed talking about this application. It is a Qt-based, cross-platform UI that provides access to ParaView computing
capabilities. Major parts of this guide are dedicated to understanding and using this application.

pvpython

pvpython is the Python interpreter that runs ParaView’s Python scripts. You can think of this as the equivalent of the
paraview for scripting.

pvbatch

Similar to pvpython, pvbatch is also a Python interpreter that runs Python scripts for ParaView. The one difference
is that, while pvpython is meant to run interactive scripts, pvbatch is designed for batch processing. Additionally,
when running on computing resources with MPI capabilities, pvbatch can be run in parallel. We will cover this in
more detail in Section 2.7.10.

pvserver

For remote visualization, this executable represents the server that does all of the data processing and, potentially, the
rendering. You can make paraview connect to pvserver running remotely on an HPC resource. This allows you to
build and control visualization and analysis on the HPC resource from your desktop as if you were simply processing
it locally on your desktop!

pvdataserver and pvrenderserver

These can be thought of as the pvserver split into two separate executables: one for the data processing part,
pvdataserver, and one for the rendering part, pvrenderserver. Splitting these into separate processes makes it
possible to perform data processing and rendering on separate sets of nodes with appropriate computing capabilities
suitable for the two tasks. Just as with pvserver, paraview can connect to a pvdataserver- pvrenderserver pair
for remote visualization. Unless otherwise noted, all discussion of remote visualization or client-server visualization
in this guide is applicable to both pvserver and pvdataserver - pvrenderserver configurations.

6 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

1.1.4 Getting started with paraview

paraview graphical user interface

paraview is the graphical front-end to the ParaView application. The UI is designed to allow you to easily create
pipelines for data processing with arbitrary complexity. The UI provides panels for you to inspect and modify the
pipelines, to change parameters that in turn affect the processing pipelines, to perform various data selection and in-
spection actions to introspect the data, and to generate renderings. We will cover various aspects of the UI for the better
part of this guide.

Let’s start by looking at the various components of the UL If you run paraview for the first time, you will see something
similar to the Fig. 1.2. The UI consists of of menus, dockable panels, toolbars, and the viewport — the central portion
of the application window.

M ParaView 5.12.0-RC3 - m} =

File Edit View Sources Filters Extractors Tools Catalyst Macros Help

MELTT PR v FRF KA PDPME wi_-p 5 &9

T I XKxeEaALLIBL - B &
PEERNE® O & 2 2 & [k S0 B &
Pipeline Frowser ® n Layout #1 ®) +
B buitin: B R IE o @ 6= @ W R o A Al o » Renderiews |[I]| || ®

Properties Information

Properties ®
Apply @ Reset % Delete
Search ... (use Esc to dear text) =]
= Properties =
== Display =
== View (Render Vi § c H

Axes Grid Edit

Camera Orientation Widget
Visible

Center Axes Visibility
Orientation Axes

x ‘ [KRS-3000: 14.46\5;31.9 GiB46.5%

Fig. 1.2: paraview application window.

Menus provide the standard set of options typical with a desktop application including options for opening/saving files
(File menu), for undo/redo (Edit menu), for the toggle panel, and for toolbar visibilities (View menu). Additionally, the
menus provide ways to create sources that generate test datasets of various types (Sources menu), as well new filters for
processing data (Filters menu). The Tools menu provides access to some of the advanced features in paraview such
as managing plugins and favorites.

Panels provide you with the ability to peek into the application’s state. For example, you can inspect the visualization
pipeline that has been set up (Pipeline Browser), as well as the memory that is being used (Memory Inspector
) and the parameters or properties for a processing module (Properties panel). Several of the panels also allow you
to change the values that are displayed, e.g., the Properties panel not only shows the processing module parameters,
but it also allows you to change them. Several of the panels are context sensitive. For example, the Properties panel

1.1. Introduction to ParaView 7

ParaView Users Guide Documentation, Release 5.12.0

changes to show the parameters from the selected module as you change the active module in the Pipeline Browser

Toolbars are designed to provide quick access to common functionality. Several of the actions in the toolbar are ac-
cessible from other locations, including menus or panels. Similar to panels, some of the toolbar buttons are context
sensitive and will become enabled or disabled based on the selected module or view.

The viewport or the central portion of the paraview window is the area where ParaView renders results generated
from the data. The containers in which data can be rendered or shown are called views. You can create several different
types of views, all of which are laid out in this viewport area. By default, a 3D view is created, which is one of the
most commonly used views in ParaView.

Understanding the visualization process

To gain a better understanding of how to use the application interface, let’s consider a simple example: creating a data
source and applying a filter to it.

Creating a source

The visualization process in ParaView begins by bringing your data into the application. Section 1.2 explains how to
read data from various file formats. Besides reading files to bring in data into the application, ParaView also provides
a collection of data sources that can produce sample datasets. These are available under the Sources menu. To create
a source, simply click on any item in the Source menu.

Did You Know?

As you move your cursor over the items in any menu, on most platforms (except macOS), you’ll see a brief description
of the item in the status bar on the lower-left corner in the application window.

If you click on Sources > Alphabetical > Sphere, for example, you’ll create a producer algorithm that generates a
spherical surface, as shown in Fig. 1.3.

A few things to note:

1. A pipeline module is added in the Pipeline Browser panel with a name derived from the menu item, as is
highlighted.

2. The Properties panel fills up with text to indicate that it’s showing properties for the highlighted item (which,
in this case, is Spherel), as well as to display some widgets for parameters such as Center , Radius, etc.

3. On the Properties panel, the Apply button becomes enabled and highlighted.
4. The 3D view remains unaffected, as nothing new is shown or rendered in this view as of yet.

Let’s take a closer look at what has happened. When we clicked on Sources > Sphere, referring to Section 1.1.2, we
created an instance of a source that can produce a spherical surface mesh — that’s what is reflected in the Pipeline
Browser . This instance receives a name, which is used by the Spherel and the Pipeline Browser , as well as
other components of the UI, to refer to this instance of the source. Pipeline modules such as sources and filters have
parameters on them that you can change that affect that module’s behavior. We call them properties. The Properties
panel shows these properties and allows you to change them. Since the ingestion of data into the system can be a time-
consuming process, paraview allows you to change the properties before the module executes or performs the actual
processing to ingest the data. Hence, the Apply button is highlighted to indicate that you need to accept the properties
before the application will proceed. Since no data has entered the system yet, there’s nothing to show. Therefore, the
3D view remains unaffected.

Let’s assume we are okay with the default values for all of the properties on the Spherel . Next, click on the Apply
button.

8 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

M ParaView 5.12.0-RC3 - O X

File Edit View Sources Filters Extractors Tools Catalyst Macros Help
b § . (& =
ERELTT DR e FhF KA PPMHE wi - 5 | S
P& aasa9s - XY OEad bR ABAL (B @
LLLLEEY LRASRERL &
P\pelme‘Browser B DLayoutffl@ +
B bt PR B o® =k NN E A RA W ANL I v Renleviem [D]E|A®

Properties Information
Properties B

" Apply @ Reset % Delete ?

Search ... {use Esc to dear text) e]

== Pproperties (Sphi | = SlEF
Center 0 a [t}
Radius 0.5
Theta Resolution |§
Phi Resolution |§

== Display Clle

== View (Render Vi | = SIE

Axes Grid Edit

®|| [KR5-3000: 14.9 GIB/31.9 GIB46.5%

Fig. 1.3: Visualization in paraview: Step 1.

1.1. Introduction to ParaView

ParaView Users Guide Documentation, Release 5.12.0

Let’s assume we are okay with the default values for all of the properties on the Spherel. Next, click on the Apply
button.

M Paraview 5.12.0-RC3 - O X

File Edit View Sources Filters Extractors Tools Catalyst Macros Help

PRI TY BB wa FhF KACPDPME w5 &S

|| % .? ﬁ ﬁ i ﬁ @ solid Color = - Surface - X :’i O * &‘) gﬁ ﬁ'—'x’ g: ’:E 28 3_7' 7 ﬁ ” O
EVERRNOTSE e LRER2DULERL £@

Pipeline Browser B DLayoutffl@ +

* mﬁ o B E ® o@si=g AN @R AR A2 2% » Renevienm DEH|(®

Properties Information

Properties
Apply @ Reset % Delete
Search ... {use Esc to dear text)
== Properties (Sphere1) =]
Center 1] 1] o
Radius 0.5

Theta Resolution |8
Phi Resolution |8

== Display (GeometryRepr —“'\
Representation | Surface

Coloring

]

O | KR5-3000: 14 GIB/319 GIB45.75%

Fig. 1.4: Visualization in paraview: Step 2.

The following will ensue (Fig. 1.4):
1. The Apply button goes back to its old disabled/un-highlighted state.
2. A spherical surface is rendered in the 3D view.
3. The Display section on the Properties panel now shows new parameters or properties.
4

. Certain toolbars update, and you can see that toolbars with text, such as Solid Color and Surface , now
become enabled.

By clicking Apply , we told paraview to apply the properties shown on the Properties panel. When a new source
(or filter) is applied for the first time, paraview will automatically show the data that the pipeline module produces in
the current view, if possible. In this case, the sphere source produces a surface mesh, which is then shown or displayed
in the 3D view.

The properties that allow you to control how the data is displayed in the view are now shown on the Properties panel
in the Display section. Things such as the surface color, rendering type or representation, shading parameters, etc.,
are shown under this newly updated section. We will look at display properties in more detail in Section 1.4.

Some of the properties that are commonly used are also duplicated in the toolbar. These properties include the data
array with which the surface is colored and the representation type. These are the changes in the toolbar that allow you
to quickly change some display properties.

10 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Changing properties

If you change any of the properties on the sphere source, such as the properties under the Properties section on the
Properties panel, including the Radius for the spherical mesh or its Center , the Apply button will be highlighted
again. Once you are finished with all of the property changes, you can hit Apply to apply the changes. Once the
changes are applied, paraview will re-execute the sphere source to produce a new mesh, as requested. It will then
automatically update the view, and you will see the new result rendered.

If you change any of the display properties for the sphere source, such as the properties under the Display section of
the Properties panel (including Representation or Opacity), the Apply button is not affected, the changes are
immediately applied, and the view is updated.

The rationale behind this is that, typically, the execution of the source (or filter) is more computationally intensive
than the rendering. Changing source (or filter) properties causes that algorithm to re-execute, while changing display
properties, in most cases, only triggers a fresh render with an updated graphics state.

Did You Know?

For some workflows with smaller data sizes, it may be more convenient if the Apply button was automatically applied
even after changes are made to the pipeline module properties. You can change this from the application settings dialog,
which is accessible from the Edit > Settings menu (ParaView > Preferences... on macOS). The setting is called Auto

Apply . You can also change the Auto Apply state using the = button from the toolbar.

Applying filters

As per the data-flow paradigm, one creates pipelines with filters to transform data. Similar to the Sources menu, which
allows us to create new data sources, there’s a Filters menu that provides access to the large set of filters that are available
in ParaView. If you peruse the items in this menu, some of them will be enabled, and some of them will be disabled.
Filters that can work with the data type being produced by the sphere source are enabled, while others are disabled.
You can click on any of the enabled filters to create a new instance of that filter type.

Did You Know?

To figure out why a particular filter doesn’t work with the current source, simply move your mouse over the disabled
item in the Filters menu. On Linux and Windows (not OS X, however), the status bar will provide a brief explanation
of why that filter is not available.

Coloring
@ Solid Color - Extract Si
W Show ws Edit " Rescale

1 Extract S
Scalar Coloring FET Of Se
%| Map Scalars Feature E

Requires a point attribute array with 1 component(s)
Generate
Generate

1.1. Introduction to ParaView 11

ParaView Users Guide Documentation, Release 5.12.0

For example, if you click on Filters > Shrink, it will create a filter that shrinks each of the mesh cells by a fixed factor.
Exactly as before, when we created the sphere source, we see that the newly-created filter is given a new name, Shrink1
, and is highlighted in the Pipeline Browser . The Properties panel is also updated to show the properties for
this new filter, and the Apply button is highlighted to request that we accept the properties for the filter so that it
can be executed and the result can be rendered. If you click back and forth between the Spherel and Shrink1 in the
Pipeline Browser, you’ll see the Properties panel and toolbars update, reflecting the state of the selected pipeline
module. This is an important concept in ParaView. There’s a notion of active pipeline module, called the active source
. Several panels, toolbars, and menus will update based on the active source.

If you click Apply , as was the case before, the shrink filter will be executed and the resulting dataset will be generated
and shown in the 3D view. paraview will also automatically hide the result from the Spherel so that it is not shown
in the view. Otherwise, the two datasets will overlap. This is reflected by the change of state for the eyeball icons in
the Pipeline Browser next to each of the pipeline modules. You can show or hide results from any pipeline module
by clicking on the eyeballs.

This simple workflow forms the basis of all the data analysis and visualization in ParaView. The process involves
creating sources and filters, changing their parameters, and showing the generated result in one or more views. In the
rest of this guide, we will cover various types of filters and data processing that you can do. We will also cover different
types of views that can help you produce a wide array of 2D and 3D visualizations, as well as inspect your data and
drill down into it.

Common Errors

Beginners often forget to hit the Apply button after creating sources or filters or after changing properties. This is one
of the most common pitfalls for users new to the ParaView workflow.

1.1.5 Getting started with pvpython

While this section refers to pvpython, everything that we discuss here is applicable to pvbatch as well. Until we
start looking into parallel processing, the only difference between the two executables is that pvpython provides an
interactive shell wherein you can type your commands, while pvbatch expects the Python script to be specified on the
command line argument.

pvpython scripting interface

ParaView provides a scripting interface to write scripts for performing the tasks that you could do using the GUI. The
scripting interface can be accessed through Python, which is an interpreted programming language popular among
the scientific community for its simplicity and its capabilities. While a working knowledge of Python will be useful
for writing scripts with advanced capabilities, you should be able to follow most of the discussion in this book about
ParaView scripting even without much Python exposure.

ParaView provides a paraview package with several Python modules that expose various functionalities. The primary
scripting interface is provided by the simple module.

When you start pvpython, you should see a prompt in a terminal window as follows (with some platform specific
differences).

Python 3.10.13 (main, Feb 9 2024, 16:19:38)

[Clang 14.0.0 (clang-1400.0.29.202)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

You can now type commands at this prompt, and ParaView will execute them. To bring in the ParaView scripting
API, you first need to import the simple module from the paraview package as follows:

12 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

[>>> from paraview.simple import *]

Common Errors

Remember to hit the Enter or Return key after every command to execute it. Any Python interpreter will not execute
the command until Enter is hit.

If the module is loaded correctly, pvpython will present a prompt for the next command.

>>> from paraview.simple import *
>>>

You can consider this as in the same state as when paraview was started (with some differences that we can ignore for
now). The application is ready to ingest data and start processing.

Understanding the visualization process

Let’s try to understand the workflow by looking at the same use-case as we did in Section 1.1.4.

Creating a source

In paraview, we created the data source by using the Sources menu. In the scripting environment, this maps to simply
typing the name of the source to create.

[>>> Sphere()]

This will create the sphere source with a default set of properties. Just like with paraview, as soon as a new pipeline
module is created, it becomes the active source.

Now, to show the active source in a view, try:

>>> Show()
>>> Render ()

The Show call will prepare the display, while the Render call will cause the rendering to occur. In addition, a new
window will popup, showing the result (Fig. 1.5). This is similar to the state after hitting Apply in the UL

Changing properties

To change the properties on the sphere source, you can use the SetProperties function.

Set a single property on the active source.
>>> SetProperties(Radius=1.0)

You can also set multiple properties.
>>> SetProperties(Center=[1, 0, 0], StartTheta=100)

Similar to the Properties panel, SetProperties affects the active source. To query the current value of any property
on the active source, use GetProperty .

1.1. Introduction to ParaView 13

ParaView Users Guide Documentation, Release 5.12.0

ParaView %

Fig. 1.5: Window showing result from the Python code.

14 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

>>> radius = GetProperty("Radius")
>>> print(radius)

1.0

>>> center = GetProperty("Center")
>>> print(center)

[1.0, 0.0, 0.0]

SetProperties and GetProperty functions serve the same function as the Properties section of the Properties
panel — they allow you to set and introspect the pipeline module properties for the active source. Likewise,
for the Display section of the panel, or the display properties, we have the SetDisplayProperties and
GetDisplayProperty functions.

>>> SetDisplayProperties(Opacity=0.5)
>>> GetDisplayProperty("Opacity')
0.5

Common Errors

Note how the property names for the SetProperties and SetDisplayProperties functions are not enclosed in
double-quotes, while those for the GetProperty and GetDisplayProperty methods are.

In paraview, every time you hit Apply or change a display property, the UI automatically re-renders the view. In the
scripting environment, you have to do this manually by calling the Render function every time you want to re-render
and look at the updated result.

fixme{we’re missing blurb about reset camera}.

Applying filters

Similar to creating a source, to apply a filter, you can simply create the filter by name.

Create the ‘Shrink' filter and connect it to the active source

which is the "Sphere' instance.

>>> Shrink()

As soon as the Shrink filter is created, it will now become the new active
source. All methods acting on active source now act on this filter instance
and not the Sphere instance created earlier.

Show the resulting data and render it.
>>> Show()
>>> Render ()

If you tried the above script, you’ll notice the result isn’t exactly what we expected. For some reason, the shrank cells
are not visible. This is because we missed one stage: In paraview, the Ul was smart enough to automatically hide
the input dataset for the newly created filter after we hit apply. In the scripting interface, such operations are the user’s
responsibility. We should have hidden the sphere source from the view. We can use the Hide method, the counterpart
of Show , to hide the active source. But, now we have a problem — when we created the shrink filter, we changed the
active source to be the shrink instance. Luckily, all the functions we discussed so far can take an optional first argument,
which is the source or filter instance on which to operate. If provided, that instance is used instead of the active source.
The solution is as follows:

1.1. Introduction to ParaView 15

ParaView Users Guide Documentation, Release 5.12.0

Get the input property for the active source, i.e. the input for the shrink.
>>> shrinksInput = GetProperty("Input')

This is indeed the sphere instance we created earlier.
>>> print(shrinksInput)
<paraview.servermanager.Sphere object at 0x11d731e90>

Hide the sphere instance explicitly.
>>> Hide(shrinksInput)

Re-render the result.
>>> Render ()

Alternatively, you could also get/set the active source using the GetActiveSource and SetActiveSource functions.

>>> shrinkInstance = GetActiveSource()
>>> print(shrinkInstance)
<paraview.servermanager.Shrink object at 0x11d731ed0>

Get the input property for the active source, i.e. the input
for the shrink.
>>> sphereInstance = GetProperty("Input')

This is indeed the sphere instance we created earlier.
>>> print(sphereInstance)
<paraview.servermanager.Sphere object at 0x11d731e90>

Change active source to sphere and hide it.
>>> SetActiveSource(sphereInstance)
>>> Hide()

Now restore the active source back to the shrink instance.
>>> SetActiveSource(shrinkInstance)

Re-render the result
>>> Render ()

The result is shown in Fig. 1.6 .

SetActiveSource has same effect as changing the pipeline module, highlighted in the Pipeline Browser , by
clicking on a different module.

Alternative approach

Here’s another way of doing something similar to what we did in the previous section for those familiar with Python
and/or object-oriented programming. It’s totally okay to stick with the previous approach.

>>> from paraview.simple import *
>>> sphereInstance = Sphere()

>>> sphereInstance.Radius = 1.0
>>> sphereInstance.Center[1] = 1.0
>>> print(sphereInstance.Center)
[0.0, 1.0, 0.0]

(continues on next page)

16 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

ParaView x

Fig. 1.6: Window showing result from the Python code after applying the shrink filter.

(continued from previous page)

>>> sphereDisplay = Show(sphereInstance)
>>> view = Render()
>>> sphereDisplay.Opacity = 0.5

Render function can take in an optional view argument, otherwise it
will simply use the active view.
>>> Render(view)

>>> shrinkInstance = Shrink(Input=sphereInstance,
ShrinkFactor=1.0)

>>> print(shrinkInstance.ShrinkFactor)

1.0

>>> Hide(sphereInstance)

>>> shrinkDisplay = Show(shrinkInstance)

>>> Render ()

1.1. Introduction to ParaView 17

ParaView Users Guide Documentation, Release 5.12.0

Updating the pipeline

When changing properties on the Properties panel in paraview, we noticed that the algorithm doesn’t re-execute
until you hit Apply . In reality, Apply isn’t what’s actually triggering the execution or the updating of the processing
pipeline. What happens is that Apply updates the parameters on the pipeline module and causes the view to render.
If the output of the pipeline module is visible in the view, or if the output of any filter connected to it downstream is
visible in the view, ParaView will determine that the data rendered is obsolete and request the pipeline to re-execute.
It implies that if that pipeline module (or any of the filters downstream from it) is not visible in the view, ParaView
will have no reason to re-execute the pipeline, and the pipeline module will not be be updated. If, later on, you do make
this module visible in the view, ParaView will automatically update and execute the pipeline. This is often referred to
as demand-driven pipeline execution . It makes it possible to avoid unnecessary module executions.

In paraview, you can get by without ever noticing this since the application manages pipeline updates automatically. In
pvpython too, if your scripts are producing renderings in views, you’d never notice this as long as you remember to call
Render . However, you may want to write scripts to produce transformed datasets or to determine data characteristics.
In such cases, since you may never create a view, you’ll never be seeing the pipeline update, no matter how many times
you change the properties.

Accordingly, you must use the UpdatePipeline function. UpdatePipeline updates the pipeline connected to the
active source (or only until the active source, i.e., anything downstream from it, won’t be updated).

>>> from paraview.simple import *
>>> sphere = Sphere()

Print the bounds for the data produced by sphere.
>>> print(sphere.GetDataInformation() .GetBounds())
(le+299, -1e+299, 1e+299, -1e+299, 1le+299, -1e+299)
The bounds are invalid -- no data has been produced yet.

Update the pipeline explicitly on the active source.
>>> UpdatePipeline()

Alternative way of doing the same but specifying the source
to update explicitly.
>>> UpdatePipeline(proxy=sphere)

Let's check the bounds again.

>>> sphere.GetDataInformation() .GetBounds()

(-0.48746395111083984, 0.48746395111083984, -0.48746395111083984, 0.48746395111083984, -
—0.5, 0.5)

If we call UpdatePipeline() again, this will have no effect since

the pipeline hasn't been modified, so there's no need to re-execute.

>>> UpdatePipeline()

>>> sphere.GetDataInformation() .GetBounds ()

(-0.48746395111083984, 0.48746395111083984, -0.48746395111083984, 0.48746395111083984, -
-0.5, 0.5)

Now let's change a property.
>>> sphere.Radius = 10

The bounds won't change since the pipeline hasn't re-executed.
>>> sphere.GetDataInformation() .GetBounds()
(-0.48746395111083984, 0.48746395111083984, -0.48746395111083984, 0.48746395111083984, -

(continues on next page)

18 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

-0.5, 0.5)

Let's update and see:

>>> UpdatePipeline()

>>> sphere.GetDataInformation() .GetBounds()

(-9.749279022216797, 9.749279022216797, -9.749279022216797, 9.749279022216797, -10.0, 10.
-0)

We will look at the sphere.GetDataInformation API in Section 1.3.3 in more detail.

For temporal datasets, UpdatePipeline takes in a time argument, which is the time for which the pipeline must be
updated.

To update to time 10.0:
>>> UpdatePipeline(10.0)

Alternative way of doing the same:
>>> UpdatePipeline(time=10.0)

If not using the active source:
>>> UpdatePipeline(10.0, source)
>>> UpdatePipeline(time=10.0, proxy=source)

1.1.6 Scripting in paraview

The Python Shell

The paraview application also provides access to an internal shell, in which you can enter Python commands and
scripts exactly as with pvpython. To access the Python shell in the GUI, use the View > Python Shell menu option. A
dialog will pop up with a prompt exactly like pvpython. You can try inputting commands from the earlier section into
this shell. As you type each of the commands, you will see the user interface update after each command, e.g., when
you create the sphere source instance, it will be shown in the Pipeline Browser . If you change the active source,
the Pipeline Browser and other Ul components will update to reflect the change. If you change any properties or
display properties, the Properties panel will update to reflect the change as well!

Did You Know?

The Python Shell in paraview supports auto-completion for functions and instance methods. Try hitting the Tab
key after partially typing any command (as shown in Fig. 1.7).

Tracing actions for scripting

This guide provides a fair overview of ParaView’s Python API. However, there will be cases when you just want to
know how to complete a particular action or sequence of actions that you can do with the GUI using a Python script
instead. To accomplish this, paraview supports tracing your actions in the UI as a Python script. Simply start tracing
by clicking on Tools > Start Trace. paraview now enters a mode where all your actions (or at least those relevant
for scripting) are monitored. Any time you create a source or filter, open data files, change properties and hit Apply ,
interact with the 3D scene, or save screenshots, etc., your actions will be monitored. Once you are done with the series
of actions that you want to script, click Tools > Stop Trace. paraview will then pop up an editor window with the

1.1. Introduction to ParaView 19

ParaView Users Guide Documentation, Release 5.12.0

M ParaView 5.12.0-RC3

Eile Edit View Sources Filters Extractors Tools Catalyst Macras Help

HEEREAe DB e FhE KA PP E mp o CEET R S

B % é ﬁ ﬂ & ﬁ @ solid Color - - Surface - x 3.€ 0 * {?;i gﬁ u m ﬂ ﬂ g” 7
TR OSELO®L LRL2EUFL @
Pipeline Browser ® DLavoutfﬁ.@ +
5

T
[buitin: @ @® s

T

@)

f

(=]

W W e AN 27 » Rendertiews [T]| ®
*

Properties Information

Properties

Apply @ Reset ® Delete

Search ... {use Esc to dear text)

== Properties (Spherel, =]
pertics (Spherel). || @ ~ " PythonShel &l
Center 0 0 a 5>
Radius 0s Python 3.10.11 (tags/v3.10.11:7d4ccSa, Apr 5 2023, 00:38:17) [MSC v.1929% &4 bit (AMD&4)] on win32
. >>> from paraview.simple import *
Theta Resolution | »>> Sphere(}
<paraview.servermanager.Sphere object at 0x000001DF197D3940>
Phi Resolution |8 5> Show ()
N ~ <paraview.sServermanager.GeometryRepresentation object at 0x000001DF36DBDDS0>
== Display (GeometryRepr 4 3> Render ()
<paraview.servermanager.RenderView object at 0x000001DF3723EF50>
Representation | Surface }I;} Sh = J
Coloring
T o Showill
ShowlnteractiveWidgets Run Seript Clear Reset
Show3DWidgets "
Shrink KR5-3000: 14.#6\5{31.9 GiB45.6%

Fig. 1.7: Python Shell in paraview provides access to the scripting.

20 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

generated trace. This will be the Python script equivalent for the actions you performed. You can now save this as a
script to use for batch processing.

1.2 Loading Data

In a visualization pipeline, data sources bring data into the system for processing and visualization. Sources, such as the
Sphere source (accessible from the Sources menu in paraview), programmatically create datasets for processing.
Another type of data sources are readers. Readers can read data written out in disk files or other databases and bring it
into ParaView for processing. ParaView includes readers that can read several of the commonly used scientific data
formats. It’s also possible to write plugins that add support for new or proprietary file formats.

ParaView provides several sample datasets for you to get started. You can download an archive with several types of
data files from the download page at https://www.paraview.org/download under the Data section.

1.2.1 Opening data files in paraview

To open a data file in paraview, you use the Open File dialog. This dialog can be accessed from the File > Open
menu or by using the button in the Main Controls toolbar. You can also use the keyboard shortcut CTRL + O (or +
0) to open this dialog.

] ® Open File: open multiple files with <ctrl> key.)
Local File System
Look in: rs,-fcory.lncal,"build,-fparaview—debug;’ExternalDatafTestinngatajﬁ (] o
Favorites + o Filename ~ Type
can-restarts Folder
can.e.d Folder
examples can_vtm Folder
vtk cavity Folder
Y cOons_np.. Group
— cgns_np01 Folder
occations
cgns_np04 Folder
Hame CompositeGlyphTree Folder
Desktop double_mach_reflection Folder
Documents dualSphereAnimation Folder
Dioseclocas ensemble-wavelat Folder
Recent FnSirht Frilder
Mame:

Files of type: Supported Types (*.bp md.idx *“bp ‘.bp-a Cancel

Fig. 1.8: Open File dialog in paraview for opening data (and other) files.

The Open File dialog allows you to browse the file system on the data processing nodes. This will become clear when
we look at using ParaView for remote visualization. While several of the Ul elements in this dialog are obvious such as

1.2. Loading Data 21

https://www.paraview.org/download

ParaView Users Guide Documentation, Release 5.12.0

navigating up the current directory, creating a new directory, and navigating back and forth between directories, which
can all be done with the standard system shortcuts like CTRL + N (or + N) to create a directory or A1t + 1 to go to the
parent directory, there are a few things to note.

e The Favorites pane contains a custom list of favorite directories that can be customized using the buttons
above it, which respectively adds the current directory to the favorites or removes all the favorites. Another way
to change which directories are in the favorites is to use the right-click context menus in the list of files. Right-
clicking any directory in the main list will display a menu with the option to add it to the favorites. To remove
edit an exising favorite, right-click or ctrl-click the favorite. A context menu appears which lets you remove the
favorite or rename it.

* The Locations pane shows some platform-specific common locations such as the home directory and desktop.
External drives will also appear in this list.

* The Recent Directories pane shows a few of the most recently used directories.

You can browse to the directory containing your datasets and either select the file and hit Ok or simply double click on
the file to open it. You can also select multiple files using the CTRL (or) key. This will open each of the selected files
separately.

Right-clicking the files list will display a few options, depending on what was right-clicked.

o] Open File: open multiple files with <ctrl> key.)
Look in: rﬁjcory.lo:al,l'build,."parauiew—debug,fExlernaIDatajTeﬁting,l'Datafﬁ (] o
Favorites e o Filename ~ | Type
[dualSphereAnimation Folder
B empty directon Folder
[examples i enseml Add to favorites “glder
vtk I Ensigh Rename Zolder
m ExRest Openin file explorer Zolder
. fm FDSEx; Delete empty directory g 4er
Locations B Fides Show Hidden Files older
i Home [FieldDataBlocks Folder
[Desktop [FileSeries Folder
[Documents ™ GenericlOReader Folder
AR assleses [glebbing Folder
Recent m AlTF Falder

Name: empty_directory

Files of type: Supported Types (*bp md.idx *bp *bp. Cancel

* Selecting a directory adds the Add to favorites option which adds the selected directory to the Favorites
pane on the left.

* Selecting a file or a directory adds the Rename option.

e The Open in file explorer is also always present and either opens in the system file explorer the selected
directory if one was right-clicked, or opens the current directory if a file or nothing was selected.

22 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

* Selecting an empty directory provides the Delete empty directory option.
* The Show Hidden Files is always visible, and can be checked to display the hidden files and directories.

The Look in: combobox shows the current path in the Open File dialog. Clicking on the combobox down arrow will
show the parent directories of the current directory while clicking in the path line edit itself allows you to edit the path.
Navigation buttons showing arrows are to the right of the combo box. These enable navigating through previously
visited directories as well as moving up to the parent of the current directory. The button to the right of the arrows
toggles on or off additional columns in the dialog that show file size and last modified date.

When a file is opened, paraview will create a reader instance of the type suitable for the selected file based on its
extension. The reader will simply be another pipeline module, similar to the source we created in Section 1.1. From
this point forward, the workflow will be the same as we discussed in Section 1.1.4 : You adjust the reader properties,
if needed, and hit Apply . paraview will then read the data from the file and render it in the view.

If you selected multiple files using the CTRL (or) key, paraview will create multiple reader modules. When you hit
Apply , all of the readers will be executed, and their data will be shown in the view.

[] @ Open File: open multiple files with <ctrl> key.)

Local File \IB“.GITI

Look in: rsfcory.Io::aI,"bu'lId,‘paraview—debug,-'ExternaIDatafTestinngata,-'ﬂ o 4
Favorites | ¥ S Fllenaml'\iuItiBIDckWithF"l’e:es.vtm L
wvor MultiBlockWithPieces_0_O.vtp File
examples MultiBlockWithPieces_1_0.vtp File
multicomb_0.wts File
multicomb_1vts File
Locations multicomb_2.vts File
Home MultiPiece.vtm File
Desktop MNEZ_ps_bath.png File
Documents non_conves_polygon.vtu File
B office.binary.vtk File
Recent OverridePropertyPlugin.xml File

MName: multicomb_. vts

Files of type: Supported Types (*bp md.idx *bp “bp- & Cancel

By default, paraview groups files that appear to define a time series. These file series have names that contain a
number sequence where the number defines the order of the files in time. paraview can be told not to do this by
clicking on the button at the top right of the Open File dialog.

Did you know?

This ability to hit the Apply button once to accept changes on multiple readers applies to other pipeline modules,
including sources and filters. In general, you can change properties for multiple modules in a pipeline, and hit Apply
to accept all of the changes at once. It is possible to override this behavior from ParaView’s’ Settings dialog using
the Auto Apply Active Only setting under the General tab. When this setting is enabled, only the selected source
in the Pipeline Browser will be updated.

1.2. Loading Data 23

ParaView Users Guide Documentation, Release 5.12.0

5] & Open File: open multiple files with <ctrl> key.)
Local File System
Look in: rsfcory.local,"buildfparaview—dEbug,"ExLernaIDatafTesting,’Data,"n QO O
F it ~~ Filename ~ | Type
avorites | 4 A MultiBlockWithPieces vtm File
” MultiBleckWithPieces_0_0.vtp File
examples MultiBlockWithPieces 1 0.vtp File
vtk v multicomb_..vts Group
B multicomb_0vts File
multicomb_1.vts File
Locations B multicomb_2 vts File
Home MultiPiece.vtm File
Desktop NE2_ps_bath.png Fle
Documents . non_convex_polygon.vtu File
B o office binary.vtk File
Recent QverridePropertyPlugin.xml File

Name: Lvis;non_convex_polygoen.viu; ﬁ

Files of type: Supported Types (*bp md.idx *bp *bp Cancel

Fig. 1.9: The Open File dialog can be used to select a temporal file series (top) or select multiple files to open
separately (bottom).

Reader selection depending on the selected file types

When selecting files, the current category for the “Files of type” field (Fig. 1.10) changes the way the reader will be
chosen.

* If the “Supported Files” value is selected, if only one reader is available for the type of file, it will be selected

automatically. If multiple readers can be used, the “Open Data With...” dialog (Fig. 1.11) will appear to choose
which reader to use. Clicking the “Set reader as default” button tells ParaView to automatically use this reader
when one of the file name patterns it says it can support matches a file that could otherwise be opened by multiple
readers. When a reader is set as default, it will be used automatically for files that match its patterns.

If the “All Files” value is selected, the same dialog will be displayed with all the existing readers. If you picked
an incorrect reader, however, you’ll get error messages either when the reader module is instantiated or after you
hit Apply. In either case, you can simply Delete the reader module and try opening the file again, this time
choosing a different reader. If you can click the Set reader as default button, a small window with a line
edit will be displayed where you can set the custom pattern to use for this reader (Fig. 1.12). This is a standard
wildcard pattern, and multiple patterns can be used by separating them with spaces.

If a specific reader is selected, for example “PNG Image Files”, this reader will be always be used automatically,
even if other readers would be available or if the file is matching a pattern present in the “Default reader details”
settings.

Error messages in paraview are shown in the Output Messages window (Fig. 1.13). It is accessible from the View
> Output Messages menu. Whenever there’s a new error message, paraview will automatically pop open this window
and raise it to the top (as long as the Always open for new messages option is set. This window can be attached,
or docked, in the main window so that it is visible with the other user interface elements without covering them up.

The default readers settings can be seen and modified in the Edit > Settings menu, and I0 tab (Fig. 1.14).

24

Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

[] ® Open File: open multiple files with <ctrl> key.)

Local File System

Look in: rsf::ory.IocaIfbuiIdfparaviEW—debungxternalDatafTestinngataf (< RER->RNN 1)

: Filenam ~ |T
Favorites ok o B SELAC leﬁer
avorites SPCTH Folder
examples 1 squareBend Folder
vik [0 testxmlpartds Folder
testxmlpartdscol Falder
. todd2_small Folder
Locations [Udirectory Folder
Home VisltBridge Folder
Desktop vtkHDF Folder
Documents Wavelet Folder
W g 1 YoungsMaterialinterface Folder

Recent B ugridnc File
Name: ugridnc ok

Files of type: ADAPT Files (*nc *.cdf =elev *ncd) Cancel

Fig. 1.10: File dialog “Files of type” to filter which files to show and to change how the reader will be chosen.

1.2. Loading Data 25

ParaView Users Guide Documentation, Release 5.12.0

@ [] Open Data With...

More than one reader for "/Users/cory.local/build/paraview-debug/
ExternalData/Testing/Data/poisson_3d0.h5" found. Please choose

one:

PDAL Reader

Vislt Chombo Reader
Vislt GTC Reader

Vislt M3D Reader

Vislt M3DC1 Reader
Vislt PFLOTRAN Reader
Vislt Pixie Reader

Vislt Tetrad Reader
Vislt UNIC Reader

Vislt Vs Reader

Opening the file with an incompatible reader may result in
unpredictable behavior or a crash. Please choose the correct

reader.

ﬁ Set reader as default

Cancel

Fig. 1.11: Open Data With. .. dialog shown to manually choose the reader to use for a file with multiple available

Define custom pattern

readers.

For example: '"*.png *.jpg’

Define the pattern you want to use to default to this reader.

| *exd

Cancel oK

Fig. 1.12: The Default reader details setting is used to define file name patterns and which reader should read

files that match those patterns.

[] Output Messages

ERROR: In vtkADIOS2CoreImageReader.cxx, line 338

vtkADIOS2CoreImageReader (0x7fcd4aad0d2f0): cannot read file/Users/cory.local/build/paraview=-

debug/ExternalData/Testing/Data/bot2.wrl

ERROR: In vtkADIOS2CorelmageReader.cxx, line 439

vtkADIOS2CoreImageReader (0x7fcdaad40d2£0): unable to open file and data

WODAT: Trn kb Pwacnt imra s Tima 73N

Show full messages Always open for new messages

Copy to Clipboard Save to File... Clear

Fig. 1.13: The Output Messages window is used to show errors, warnings, and other messages raised by the appli-

cation.

26

Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

® @ Settings

General .LOI Camera Render View Represented Attributes Color Palette

Search ... (use Esc to clear text)

L]

Default reader details: List of file patterns, names and underlying filter to use
by default when selecting a file with the "Supported Files" filter selected.

File pattern Description Filter o
1 *png PMG Image Files PNGSeriesReader
4
Reader Selection: List of readers to display or hide in the File .. Open dialog.
Reader Selection O]
ADAPT Files (*nc *.cdf *.elev *ncd)
ADIOS2 BP (4/5) Directery (Corelmage) (bp “bp4 *bp5)
ADIOS2 BP3 File (Corelmage) (*.bp)

Reset Restore Defaults Apply Cancel -

Fig. 1.14: Default reader settings.

Handling temporal file series

Most datasets produced by scientific simulation runs are temporal in nature. File formats differ in how this information
is saved in the file. While several file formats support saving multiple timesteps in the same file, others save them out
as a sequence of files, known as a file series

The Open File dialog automatically detects file series and shows them as a grouped element, as shown in Fig. 1.9. To
load the file series, simply select the group, and hit Ok . You can also open a single file in the series as a regular file.
To do so, open the file group and select the file you want to open.

paraview automatically detects several of the commonly-known file naming patterns used for indicating a file series.
These include:

fooN.vtk fooN.vtk Nfoo.vtk foo.vtk.N
foo_N.vtk foo.N.vtk N.foo.vtk foo.vtksN

where foo could be any filename, N is a numeral sequence (with any number of leading zeros), and vtk could be any
extension.

Sometimes this grouping of files with names that follow a numeral sequence into a time series is not desired. The Open
File dialog has a toggle button that controls whether these file sequences are interpreted as time series. It defaults to
on, but if toggled off, then paraview will not group file series until the button is toggled back on.

ParaView also supports a meta file format based on JSON. This format has support for specifying time values. The
format (currently version 1.0) looks like the following

{
"file-series-version" : "1.0",
(continues on next page)

1.2. Loading Data 27

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

"files" : [
{ "name" : "fool.vtk", "time" 0 1,
{ "name" : "foo2.vtk", "time" : 5.5 },
{ "name" : "foo3.vtk", "time" 11.2 }

Usually, a reader supporting extension will also supports extension.series as the file series meta file.

Dealing with time
When you open a dataset with time, either as a file series or in a file format that natively supports time, paraview will
automatically set up an animation for you so that you can play through each of the time steps in the dataset by using

the button on the VCR Controls toolbar (Fig. 1.15). You can change or modify this animation and further customize
it, as discussed in Chapter Section 1.7.

A4 D>I>ME

Fig. 1.15: VCR Controls toolbar for interacting with an animation.

Reopening previously opened files

paraview remembers most recently opened files (or file series). Simply use the File > Recent Files menu. paraview
also remembers the reader type selected for files with unknown extensions or for occasions when multiple reader choices
were available. Lastly, ParaView also records the server connection used to load a particular file. If you are connected
to one server and access a file through the Recent Files menu that was on another server, paraview will ask if you want
to disconnect from the current server and connect to the server on which the recent file resides.

Opening files using command line options

paraview provides a command line option that can be used to open datasets on startup.

[> paraview --data=.../ParaViewData/Data/can.ex2 }

This is equivalent to opening a can.ex2 data file from the Open File dialog. The same set of follow-up actions happen.
For example, paraview will try to locate a reader for the file, create that reader, and wait for you to hit Apply .

To open a file series, simply replace the numbers in the file name sequence by a . For example, to open a file series
named my®.vtk, myl.vtk ... myN.vtk, use my. .vtk.

[> paraview --data=.../ParaViewData/Data/my..vtk]

28 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Common properties for readers
ParaView uses different reader implementations for different file formats. Each of these have different properties

available to you to customize how the data is read and can vary greatly depending on the capabilities of the file format
itself or the particular reader implementation. Let’s look at some of the properties commonly available in readers.

Selecting data arrays

Properties &%

Delete ?

vari

= properties (disk_out_ref.ex2)

«|Variables

Object Ids
Global Element Ids
22 Global Node Ids
. Temp

LV

, Pres

, AsH3

. GaMe3

. CH4

g H2

= Display

Fig. 1.16: Array selection widget for selecting array to load from a data file.

One of the most common properties on readers is one that allows you to select the data arrays to be loaded, be they
cell-centered, point-centered, or otherwise. Often times, loading only the data arrays you know you are going to use
in the visualization will save memory, as well as processing time, since the reader does not have to read in those data
arrays, and the filters in the pipeline do not have to process them.

Did you know?

You can change paraview’s default behavior to load all available data arrays by selecting the Load All Variables
checkbox under Settings/Properties Panel Options/Advanced .

® @ Settings
IO Camera Render View Represented Attributes Color Palette

load

Properties Panel Options

Load All Variables: Load all variables when loading a data set.

The user interface for selecting the arrays to load is simply a list with the names of the arrays and a checkbox indicating
whether that array is to be loaded or not (Fig. 1.16). Icons, such as and are often used in this widget to give you an
indication of whether the array is cell-centered or point-centered, respectively.

1.2. Loading Data 29

ParaView Users Guide Documentation, Release 5.12.0

If you initially de-select an array, but then as you’re setting up your visualization pipeline realize that you need that data
array, you can always go back to the Properties page for the reader by making the reader active in the Pipeline
Browser and then changing the array selection. ParaView will automatically re-execute any processing pipeline set
up on the reader with this new data array.

Common Errors

Remember to hit Apply (or use Auto Apply) after changing the array selection for the change to take effect.

Sometimes the list of data arrays can get quite large, and it can become cumbersome to find the array for which you are
looking. To help with such situations, paraview provides a mechanism to search lists. Click inside the widget to make
it get the focus. Then type CTRL + F (or + F) to get a search widget. Now you can type in the text to search. Matching
rows will be highlighted (Fig. 1.17).

Properties =ES]

@ Reset # Delete ?

!L:,Variables |
% ﬁ_l OEject Ids '
% {jl Global Element Ids

, Termp i
|
, Pres

, AsH3

, GaMe3
¢ CH4
 H2

o0 0

%| Apply Displacements

Displacement
Magnitude [2]

Fig. 1.17: To search through large lists in paraview, you can use CTRL + F.

Did you know?

The ability to search for items in an array selection widget also applies to other list and tree widgets in the paraview
UL Whenever you see a widget with a large number of entries in a list, table, or tree fashion, try using CTRL + F (or +
F).

1.2.2 Opening data files in pvpython

To open data files using the scripting interface, ParaView provides the OpenDataFile function.

>>> reader = OpenDataFile(".../ParaViewData/Data/can.ex2")
>>> if reader:
print("Success")
. else:
print("Failed")

30 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

OpenDataFile will try to determine an appropriate reader based on the file extension, just like paraview. If no reader
is determined, None is returned. If multiple readers can open the file, however, OpenDataFile simply picks the first
reader. If you explicitly want to create a specific reader, you can always create the reader by its name, similar to other
sources and filters.

[>>> reader = ExodusIIReader(FileName=".../ParaViewData/Data/can.ex2")

To find out information about the reader created and the properties available on it, you can use the help function.

>>> reader = ExodusIIReader(FileName=".../ParaViewData/Data/can.ex2")
>>> help(reader)
Help on ExodusIIReader in module paraview.servermanager object:

class ExodusIIReader (ExodusIIReaderProxy)

| The Exodus reader loads

| Exodus II files and produces an unstructured grid output.

| The default file extensions are .g, .e, .ex2, .ex2v2,

| .exo, .gen, .exoII, .exii, .0, .00, .000, and .0000. The

| file format is described fully at:

| http://endo.sandia.gov/SEACAS/Documentation/exodusII.pdf.
|
I

Data descriptors defined here:

AnimateVibrations
If this flag is on and HasModeShapes is also on, then
this reader will report a continuous time range [0,1] and
animate the displacements in a periodic sinusoid. If this
flag is off and HasModeShapes is on, this reader ignores
time. This flag has no effect if HasModeShapes is off.

ApplyDisplacements
Geometric locations can include displacements. When this
option is on, the nodal positions are 'displaced' by the
standard exodus displacement vector. If displacements are
turned 'off', the user can explicitly add them by applying
a warp filter.

Did you know?

The help function can be used to get information about properties available on any source or filter instance. It not only
lists the properties, but also provides information about how they affect the pipeline module. help can also be used on
functions. For example:

>>> help(OpenDataFile)
Help on function OpenDataFile in module paraview.simple:
OpenDataFile(filename, **extraArgs)

Creates a reader to read the given file, if possible.
This uses extension matching to determine the best reader

(continues on next page)

1.2. Loading Data 31

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

possible. If a reader cannot be identified, then this
returns None.

Handling temporal file series

Unlike paraview, pvpython does not automatically detect and load file series. There are two ways you can load a file
series:

* You can explicitly list the filenames in the series and pass that to the OpenDataFile call.

Create a list with the names of all the files in the file series in
correct order.
>>> files = [".../Data/multicomb_0.vts",
".../Data/multicomb_1.vts",
".../Data/multicomb_2.vts"]
>>> reader = OpenDataFile(files)

* You can use globbing by inserting the wildcard * in the file name using the utility paraview.util.Glob. This
utility runs fnmatch python package on the server’s file system, so any pattern supported by fnmatch is supported
and interpreted by this utility.

>>> import paraview.util

Create a list of names of all the files in the file series.

>>> files = paraview.util.Glob(path = "multicomb_*.vts", rootDir = ".../Data")
>>> reader = OpenDataFile(files)

Dealing with time

Similar to paraview, if you open a time series or a file with multiple timesteps, pvpython will automatically set up
an animation for you to play through the timesteps.

>>> files = [".../Data/multicomb_0.vts",
".../Data/multicomb_1.vts",
".../Data/multicomb_2.vts"]

>>> reader = OpenDataFile(files)

>>> Show()

>>> Render ()

Get access to the animation scene.

>>> scene = GetAnimationScene()

Now you use the API on the scene when doing things such as playing
the animation, stepping through it, etc.

This will simply play through the animation once and stop. Watch
the rendered view after you hit "Enter.'
>>> scene.Play()

32 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Common properties on readers

Selecting data arrays

For those properties on readers that allow you to control what to read in from the file such as point data arrays, cell data
arrays, or data blocks, paraview uses a selection widget, as seen in Section 1.2.1. Likewise, pvpython provides an
API that allows you to determine the available options and then select/deselect them.

The name of the property that allows you to make such selections depends on the reader itself. When in doubt, use the
tracing capabilities in paraview (Section 1.1.6) to figure it out. You can also use help (Section 1.2.2).

ExodusIIReader has a PointVariables property that can be used to select the point data arrays to load. Let’s use
this as an example.

Open an ExodusII data file.
>>> reader = OpenDataFile(".../Data/can.ex2")

Alternatively, you can explicitly create the reader instance as:
>>> reader = ExodusIIReader(FileName = ".../Data/can.ex2")

To query/print the current status for 'PointVariables' property,
we do what we would have done for any other property:

>>> print(GetProperty("PointVariables"))

['DISPL', 'VEL', '"ACCL']

An alternative way of doing the same is as follows:
>>> print(reader.PointVariables)
['DISPL', 'VEL', 'ACCL']

To set the property, simply set it to list containing the names to
enable, e.g., if we want to read only the DISPL' array, we do

the following:

>>> SetProperties(PointVariables=['DISPL'])

Or using the alternative way for doing the same:
>>> reader.PointVariables = ['DISPL']

Now, the new value for PointVariables is:
>>> print(reader.PointVariables)
['DISPL']

To determine the array available, use:

>>> print(reader.PointVariables.Available)
['DISPL', 'VEL', 'ACCL']

These are the arrays available in the file.

Changing PointVariables only changes the value on the property. The reader does not re-execute until a re-execution
is requested either by calling Render or by explicitly updating the pipeline using UpdatePipeline .

>>> reader.PointVariables = ['DISPL', 'VEL', "ACCL']

Assuming that the reader is indeed the active source, let's update
the pipeline:
>>> UpdatePipeline()

(continues on next page)

1.2. Loading Data 33

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

Or you can use the following form if you're unsure of the active
source or just do not want to worry about it.
>>> UpdatePipeline(proxy=reader)

Print the list of point arrays read in.
>>> print(reader.PointDatal[:])
[Array: ACCL, Array: DISPL, Array: GlobalNodeId, Array: PedigreeNodeld, Array: VEL]

Change the selection.
>>> reader.PointVariables = ['DISPL']

Print the list of point arrays read in, nothing changes!
>>> print(reader.PointDatal:])
[Array: ACCL, Array: DISPL, Array: GlobalNodeld, Array: PedigreeNodeId, Array: VEL]

Update the pipeline.
>>> UpdatePipeline()

Now the arrays read in has indeed changed as we expected.
>>> print(reader.PointDatal[:])
[Array: DISPL, Array: GlobalNodeId, Array: PedigreeNodelId]

We will cover the reader.PointData API in more details in Section 1.3.3.

1.2.3 Reloading files

While ParaView is often used after the simulation has generated all the data, it is not uncommon to use ParaView to
inspect data files as they are being written out by the simulation. In such cases, the simulation may either be modifying
existing file(s) with new timesteps or creating new files for each timestep. In such cases, you may want to refresh
ParaView to make it aware of the changes. In paraview, this can be done using Reload Files . When the reader
is active, you can use the File > Reload Files menu to request the reader to refresh. paraview will prompt you to
choose whether to reload the existing file(s) or look for new files in the file series, as shown in Fig. 1.18. Click on
Reload existing file(s), to force the reader to re-read the files already opened. This is useful in cases where the
simulation may have modified existing file(s). Use Find new files to make the reader aware of any new files in the
file series.

/\ This reader supports file series. Do you want to look for new files in
\/' the series and load those, or reload the existing files?

|Reload existing ﬁlets}| Find new files

Fig. 1.18: The Reload Options dialog allows you to choose how to refresh the reader.

Similar to paraview, in pvpython, you use ReloadFiles to reload existing files, and ExtendFilesSeries to look
for new files in a file series.

For file being modified in place per timestep
>>> reader = OpenDataFile(file)

>>> ReloadFiles(reader)

(continues on next page)

34 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

For files being generated per timestep
>>> reader = OpenDataFile(file)

>>> ExtendFilesSeries(reader)

1.3 Understanding Data

1.3.1 VTK data model

To use ParaView effectively, you need to understand the ParaView data model. ParaView uses VTK, the Visualization
Toolkit, to provide the visualization and data processing model. This chapter briefly introduces the VTK data model
used by ParaView. For more details, refer to one of the VTK books [SMLO06] [KInc10].

The most fundamental data structure in VTK is a data object. Data objects can either be scientific datasets, such as
rectilinear grids or finite elements meshes (see below), or more abstract data structures, such as graphs or trees. These
datasets are formed from smaller building blocks: mesh (topology and geometry) and attributes.

Mesh

Even though the actual data structure used to store the mesh in memory depends on the type of the dataset, some
abstractions are common to all types. In general, a mesh consists of vertices (points) and cells (elements, zones). Cells
are used to discretize a region and can have various types such as tetrahedra, hexahedra, etc. Each cell contains a set
of vertices. The mapping from cells to vertices is called the connectivity. Note that even though it is possible to define
data elements such as faces and edges, VTK does not represent these explicitly. Rather, they are implied by a cell’s type
and by its connectivity. One exception to this rule is the arbitrary polyhedron, which explicitly stores its faces. Fig.
1.19 is an example mesh that consists of two cells. The first cell is defined by vertices (0, 1, 3,4), and the second cell
is defined by vertices (1,2, 4,5). These cells are neighbors because they share the edge defined by the points (1,4).

Fig. 1.19: Example of a mesh.

A mesh is fully defined by its topology and the spatial coordinates of its vertices. In VTK, the point coordinates may
be implicit, or they may be explicitly defined by a data array of dimensions (number_of_points x 3).

1.3. Understanding Data 35

ParaView Users Guide Documentation, Release 5.12.0

Attributes (fields, arrays)

An attribute (or a data array or field) defines the discrete values of a field over the mesh. Examples of attributes
include pressure, temperature, velocity, and stress tensor. Note that VTK does not specifically define different types
of attributes. All attributes are stored as data arrays, which can have an arbitrary number of components. ParaView
makes some assumptions in regards to the number of components. For example, a 3-component array is assumed to
be an array of vectors. Attributes can be associated with points or cells. It is also possible to have attributes that are
not associated with either. Fig. 1.20 demonstrates the use of a point-centered attribute. Note that the attribute is only
defined on the vertices. Interpolation is used to obtain the values everywhere else. The interpolation functions used
depend on the cell type. See the VTK documentation for details.

260l 147.96 30

Fig. 1.20: Point-centered attribute in a data array or field.

Fig. 1.21 demonstrates the use of a cell-centered attribute. Note that cell-centered attributes are assumed to be constant
over each cell. Due to this property, many filters in VTK cannot be directly applied to cell-centered attributes. It is
normally required to apply a Cell Data to Point Data filter. In ParaView, this filter is applied automatically,
when necessary.

111.26

Fig. 1.21: Cell-centered attribute.

Uniform rectilinear grid (image data)
A uniform rectilinear grid, or image data, defines its topology and point coordinates implicitly (Fig. 1.22). To fully
define the mesh for an image data, VTK uses the following:

* Extents - These define the minimum and maximum indices in each direction. For example, an image data of
extents (0,9), (0,19), (0,29) has 10 points in the x-direction, 20 points in the y-direction, and 30 points in the
z-direction. The total number of points is 10 x 20 x 30.

* Origin - This is the position of a point defined with indices (0, 0, 0).

* Spacing - This is the distance between each point. Spacing for each direction can defined independently.

36 Chapter 1. ParaView User’s Guide

https://vtk.org/documentation/

ParaView Users Guide Documentation, Release 5.12.0

Fig. 1.22: Example uniform rectilinear grid.

The coordinate of each point is defined as follows: coordinate = origin + index X spacing where coordinate,
origin, index, and spacing are vectors of length 3.

Note that the generic VTK interface for all datasets uses a flat index. The (4, j, k) index can be converted to this flat
index as follows: idz_flat = k x (npts, x npts,) + j X nptry + .

A uniform rectilinear grid consists of cells of the same type. This type is determined by the dimensionality of the
dataset (based on the extents) and can either be vertex (0D), line (1D), pixel (2D), or voxel (3D).

Due to its regular nature, image data requires less storage than other datasets. Furthermore, many algorithms in VTK
have been optimized to take advantage of this property and are more efficient for image data.

Rectilinear grid

Fig. 1.23: Rectilinear grid.

A rectilinear grid, such as Fig. 1.23, defines its topology implicitly and point coordinates semi-implicitly. To fully
define the mesh for a rectilinear grid, VTK uses the following:

* Extents - These define the minimum and maximum indices in each direction. For example, a rectilinear grid of
extents (0,9), (0,19), (0,29) has 10 points in the x-direction, 20 points in the y-direction, and 30 points in the
z-direction. The total number of points is 10 x 20 x 30.

1.3. Understanding Data 37

ParaView Users Guide Documentation, Release 5.12.0

* Three arrays defining coordinates in the x-, y- and z-directions - These arrays are of length npts;, npts,, and
npts,. This is a significant savings in memory, as the total memory used by these arrays is npts, +npts, +npts.
rather than npts, x npts, x npts,.

The coordinate of each point is defined as follows:
coordinate = (coordinate_arrayy (1), coordinate_array,(j), coordinate_array.(k)).

Note that the generic VTK interface for all datasets uses a flat index. The (4, j, k) index can be converted to this flat
index as follows: idz_flat = k x (nptsy x nptsy) + j X nptry + .

A rectilinear grid consists of cells of the same type. This type is determined by the dimensionality of the dataset (based
on the extents) and can either be vertex (0D), line (1D), pixel (2D), or voxel (3D).

Curvilinear grid (structured grid)

Fig. 1.24: Curvilinear or structured grid.

A curvilinear grid, such as Fig. 1.24, defines its topology implicitly and point coordinates explicitly. To fully define
the mesh for a curvilinear grid, VTK uses the following:

* Extents - These define the minimum and maximum indices in each direction. For example, a curvilinear grid of
extents (0,9), (0,19), (0,29) has 10 x 20 x 30 points regularly defined over a curvilinear mesh.

e An array of point coordinates - This array stores the position of each vertex explicitly.

The coordinate of each point is defined as follows: coordinate = coordinate_array(idx_flat). The (i, j, k) index
can be converted to this flat index as follows: idx_flat = k x (nptsy x npts,) + j X npts, + 1.

A curvilinear grid consists of cells of the same type. This type is determined by the dimensionality of the dataset (based
on the extents) and can either be vertex (OD), line (1D), quad (2D), or hexahedron (3D).

38 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

AMR dataset

Fig. 1.25: AMR dataset.

VTK natively supports Berger-Oliger type AMR (Adaptive Mesh Refinement) datasets, as shown in Fig. 1.25. An AMR
dataset is essentially a collection of uniform rectilinear grids grouped under increasing refinement ratios (decreasing
spacing). VTK’s AMR dataset does not force any constraint on whether and how these grids should overlap. However,
it provides support for masking (blanking) sub-regions of the rectilinear grids using an array of bytes. This allows
VTK to process overlapping grids with minimal artifacts. VTK can automatically generate the masking arrays for
Berger-Oliger compliant meshes.

Unstructured grid

Fig. 1.26: Unstructured grid.

An unstructured grid, such as Fig. 1.26, is the most general primitive dataset type. It stores topology and point co-
ordinates explicitly. Even though VTK uses a memory-efficient data structure to store the topology, an unstructured
grid uses significantly more memory to represent its mesh. Therefore, use an unstructured grid only when you cannot
represent your dataset as one of the above datasets. VTK supports a large number of cell types, all of which can exist
within one heterogeneous unstructured grid. The full list of all cell types supported by VTK can be found in the file
vtkCellType.h in the VTK source code. Here is the list of cell types as of when this document was written:

1.3. Understanding Data 39

ParaView Users Guide Documentation, Release 5.12.0

VTK_EMPTY_CELL
VTK_VERTEX
VTK_POLY_VERTEX
VTK_LINE
VTK_POLY_LINE
VTK_TRIANGLE
VTK_TRIANGLE_STRIP
VTK_POLYGON
VTK_PIXEL
VTK_QUAD
VTK_TETRA
VTK_VOXEL
VTK_HEXAHEDRON
VTK_WEDGE

VTK_BIQUADRATIC_TRIANGLE
VTK_CUBIC_LINE
VTK_CONVEX_POINT_SET
VTK_POLYHEDRON
VTK_PARAMETRIC_CURVE
VTK_PARAMETRIC_SURFACE
VTK_PARAMETRIC_TRI_SURFACE
VTK_PARAMETRIC_QUAD_SURFACE
VTK_PARAMETRIC_TETRA_REGION
VTK_PARAMETRIC_HEX_REGION
VTK_HIGHER_ORDER_EDGE
VTK_HIGHER_ORDER_TRIANGLE
VTK_HIGHER_ORDER_QUAD
VTK_HIGHER_ORDER_POLYGON

VTK_PYRAMID
VTK_PENTAGONAL_PRISM
VTK_HEXAGONAL_PRISM
VTK_QUADRATIC_EDGE
VTK_QUADRATIC_TRIANGLE
VTK_QUADRATIC_QUAD
VTK_QUADRATIC_POLYGON
VTK_QUADRATIC_TETRA
VTK_QUADRATIC_HEXAHEDRON
VTK_QUADRATIC_WEDGE
VTK_QUADRATIC_PYRAMID
VTK_BIQUADRATIC_QUAD
VTK_TRIQUADRATIC_HEXAHEDRON
VTK_TRIQUADRATIC_PYRAMID
VTK_QUADRATIC_LINEAR_QUAD
VTK_QUADRATIC_LINEAR_WEDGE VTK_BEZIER_HEXAHEDRON
VTK_BIQUADRATIC_QUADRATIC_WEDGE VTK_BEZIER_WEDGE
VTK_BIQUADRATIC_QUADRATIC_HEXAHEDRON VTK_BEZIER_PYRAMID

VTK_HIGHER_ORDER_TETRAHEDRON
VTK_HIGHER_ORDER_WEDGE
VTK_HIGHER_ORDER_PYRAMID
VTK_HIGHER_ORDER_HEXAHEDRON
VTK_LAGRANGE_CURVE
VTK_LAGRANGE_TRIANGLE
VTK_LAGRANGE_QUADRILATERAL
VTK_LAGRANGE_TETRAHEDRON
VTK_LAGRANGE_HEXAHEDRON
VTK_LAGRANGE_WEDGE
VTK_LAGRANGE_PYRAMID
VTK_BEZIER_CURVE
VTK_BEZIER_TRIANGLE
VTK_BEZIER_QUADRILATERAL
VTK_BEZIER_TETRAHEDRON

Many of these cell types are straightforward. For details, see the VTK documentation.

Polygonal grid (polydata)

A polydata, such as Fig. 1.27, is a specialized version of an unstructured grid designed for efficient rendering. It
consists of OD cells (vertices and polyvertices), 1D cells (lines and polylines), and 2D cells (polygons and triangle
strips). Certain filters that generate only these cell types will generate a polydata. Examples include the Contour and
Slice filters. An unstructured grid, as long as it has only 2D cells supported by polydata, can be converted to a polydata
using the Extract Surface Filter . A polydata can be converted to an unstructured grid using Clean to Grid.

40 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Fig. 1.27: Polygonal grid.

Table
Author Affiliation Alma Mater Categories Age Coolness
0 Biff NASA Ole... Jazz; Ro... | 27 0.6
1| Bob Bob's Supermarket Ole... Jazz 54 0.3
2 Baz Bob's Supermarket ™I Food 16 0.3
3 | Bippity Oil Changes R' TVI Food 23 0.2
4 Boppity Qil Changes 'R' Home Food; AL |34 0.25
5 | Boo Qil Changes 'R' Princeton Automobiles 27 0.7

Fig. 1.28: Table

A table, such as Fig. 1.28, is a tabular dataset that consists of rows and columns. All chart views have been designed
to work with tables. Therefore, all filters that can be shown within the chart views generate tables. Also, tables can be
directly loaded using various file formats such as the comma-separated values format. Tables can be converted to other
datasets as long as they are of the right format. Filters that convert tables include Table to Points and Table to
Structured Grid.

Multiblock dataset

You can think of a multiblock dataset (Fig. 1.29) as a tree of datasets where the leaf nodes are simple datasets. All of the
data types described above, except AMR, are simple datasets. Multiblock datasets are used to group together datasets
that are related. The relation between these datasets is not necessarily defined by ParaView. A multiblock dataset
can represent an assembly of parts or a collection of meshes of different types from a coupled simulation. Multiblock
datasets can be loaded or created within ParaView using the Group filter. Note that the leaf nodes of a multiblock
dataset do not all have to have the same attributes. We call attributes that are not present on all blocks of a multiblock
dataset partial attributes or partial arrays If you apply a filter that requires an attribute, it will be applied only to blocks
that have that attribute.

1.3. Understanding Data 41

ParaView Users Guide Documentation, Release 5.12.0

Fig. 1.29: Multiblock dataset.

Multipiece dataset

Fig. 1.30: Multipiece dataset.

Multipiece datasets, such as Fig. 1.30, are similar to multiblock datasets in that they group together simple datasets.
There is one key difference. Multipiece datasets group together datasets that are part of a whole mesh - datasets of
the same type and with the same attributes. This data structure is used to collect datasets produced by a parallel
simulation without having to append the meshes together. Note that there is no way to create a multipiece dataset
within ParaView. It can only be created by using certain readers. Furthermore, multipiece datasets act, for the most
part, as simple datasets. For example, it is not possible to extract individual pieces or to obtain information about them.

42 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

1.3.2 Getting data information in paraview

In the visualization pipeline (Section 1.1.2), sources, readers, and filters are all producing data. In a VTK-based
pipeline, this data is one of the types discussed. Thus, when you create a source or open a data file in paraview
and hit Apply , data is being produced. The Information panel and the Statistics Inspector panel can be used
to inspect the characteristics of the data produced by any pipeline module.

The Information panel

The Information panel provides summary information about the data produced by the active source. By default, this
panel is tucked under a tab below the Properties panel. You can toggle its visibility using View > Information.

The Information panel shows the data information for the active source. Thus, similar to the Properties panel, it
changes when the active source is changed (e.g., by changing the selection in the Pipeline Browser). One way to
think of this panel is as a panel showing a summary for the data currently produced by the active source. Remember
that a newly-created pipeline module does not produce any data until you hit Apply . Thus, valid information for a
newly-created source will be shown on this panel only after that Apply . Similarly, if you change properties on the
source and hit Apply , this panel will reflect any changes in data characteristics. Additionally, for temporal pipelines,
this panel shows information for the current timestep alone (except as noted). Thus, as you step through timesteps in a
temporal dataset, the information displayed will potentially change, and the panel will reflect those changes.

Did you know?

Any text on this panel is copy-able. For example, if want to copy the number of points value to use it as a property
value on the Properties panel, simply double-click on the number or click-and-drag to select the number and use the
common keyboard shortcut CTRL + C (or + C) to copy that value to the clipboard. Now, you can paste it in an input
widget in paraview or any other application, such as an editor, by using CTRL + V (or + V) or the application-specific
shortcut for pasting text from the clipboard. The same is true for numbers shown in lists, such as the Data Ranges .

The several groups of information comprise the panel itself. Groups may be hidden based on the type of pipeline
module or the type of data being produced.

The file File Properties group is shown for readers with information about the file that is opened. For a temporal
file series, as you step through each time step, the file name is updated to point to the name of the file in the series that
corresponds to the current time step.

The Data Grouping section shows information about composite datasets consisting of more than one datasets in some
kind of hierarchical arrangement. Two different hierarchies are available. The Hierarchy shows the relationships of
datasets inherent in the composite dataset structure, while the Assembly shows relationships among datasets that are
explicity defined by the data source.

The Data Statistics group provides a summary of the dataset produced including its type, its number of cells and
points (or rows and columns in cases of Tabular datasets), the number of timesteps, the current time, and an estimate
of the memory used by the dataset. This number only includes the memory space needed to save the data arrays for
the dataset. It does not include the memory space used by the data structures themselves and, hence, must only be
treated as an estimate. Lastly, the group shows the spatial bounds of the datasets in 3D Cartesian space. This will be
unavailable for non-geometric datasets such as tables.

The Data Arrays group lists all of the available point, cells, and field arrays, as well as their types and ranges for the
current time step. The Current Time field shows the time value for the current timestep as a reference. As with other
places in paraview, the icons , , and are used to indicate cell, point, and field data arrays. Since data arrays can have
multiple components, the range for each component of the data array is shown.

For reader modules, the Time group shows the available time steps and corresponding time values provided by the file.

1.3. Understanding Data 43

ParaView Users Guide Documentation, Release 5.12.0

File Properties

Name can.ex2

Path

Information

/Applications/ParaView-5.12.0-RC3.app/
Contents/examples

Data Grouping

v

Hierarchy

1088

¥ element_blocks
block_1
block_2

¥ node_sets
nodelist_1
nodelist_100

v side_sets
surface_4

Data Statistics (# of datasets: 2)

Partitioned Dataset Collection

Type
of Cells 7152
of Points 10,088 (double)

of

Current Time

TimeSteps 44

(Unstructured Grid)

0 (range: [0, 0.00429998])

-7.87846 to 8.31258 (delta: 16.191)

Ranges
[-4.965284006175...
[0, 0], [0, 0], [0, O]
[1,10088]

[0, 0], [0, 0], [-500...
[0, 0]

[1, 7152]

[1, 2]

01/ Gen3D: can_hal...
[2959990.75, 295...

[0, 0]

FASTQ, 2.3, 05/16/...

Memory: 142578 MB
Bounds
0 to 8 (delta: 8)
-15 to 4.7781 (delta: 19.7781)
Data Arrays
Mame Type
ACCL double
DISPL double
ids idtype
VEL double
¥ EQPS double
£ ids idtype
¥ object_id idtype
@ Information Records string
@ KE double
@ NSTEPS double
® QARecords string
Time
Index Time
0 0
1 0.000100074
2 0.000199905

Fig. 1.31: The Information panel in paraview showing data summaries for the active source.

44

Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

For structured datasets such as uniform rectilinear grids or curvilinear grids, the Extents group is shown that displays
the structured extents and dimensions of the datasets.

All of the summary information discussed so far provides a synopsis of the entire dataset produced by the pipeline
module, including across all ranks (which will become clearer once we look at using ParaView for parallel data pro-
cessing). In cases of composite datasets, such as mutliblock datasets or AMR datasets, recall that these are datasets
that are made up of other datasets. In such cases, these are summaries over all the blocks in the composite dataset.
Every so often, you will notice that the Data Arrays table lists an array with the suffix (partial) (Figure Fig. 1.32).
Such arrays are referred to as partial arrays. Partial arrays is a term used to refer to arrays that are present on some
non-composite blocks or leaf nodes in a composite dataset, but not all. The (partial) suffix to indicate partial arrays
is also used by paraview in other places in the UL

Data Arrays

MName Data Type |Data Ranges
¢ MNormals float [-0.974928, 0.974928], [-0...
o Result (partial) double [0.5. 0.5]

Fig. 1.32: The Data Arrays section on Information panel showing partial arrays. Partial arrays are arrays that
present on certain blocks in a composite dataset, but not all.

While summaries over all of the datasets in the composite dataset are useful, you may also want to look at the data
information for individual blocks. To do so, you can use the Data Hierarchy group, which appears when summarizing
composite datasets. The Data Hierarchy widget shows the structure or hierarchy of the composite dataset (Figure
Fig. 1.33). The Information panel switches to showing the summaries for the selected sub-tree. By default, the
root element will be selected. You can now select any block in the hierarchy to view the summary limited to just that
sub-tree.

Did you know?

Memory information shown on the Information panel and the Statistics Inspector should only be used as an
approximate reference and does not translate to how much memory the data produced by a particular pipeline module
takes. This is due to the following factors:

* The size does not include the amount of memory needed to build the data structures to store the data arrays.
While, in most cases, this is negligible compared to that of the data arrays, it can be nontrivial, especially when
dealing with deeply-nested composite datasets.

* Several filters such as Calculator and Shrink simply pass input data arrays through, so there’s no extra space
needed for those data arrays that are shared with the input. The memory size numbers shown, however, do not
take this into consideration.

If you need an overview of how much physical memory is being used by ParaView in its current state, you can use the
Memory Inspector (Section 2.8).

1.3. Understanding Data 45

ParaView Users Guide Documentation, Release 5.12.0

Data Hierarchy

=~ Multi-block Dataset
= Element Blocks
Face Blocks
Edge Blocks
Element Sets

#- Side Sets
Face Sets
- Edge Sets

#- Node Sets

Fig. 1.33: The Data Hierarchy section on the Information panel showing the composite data hierarchy. Selecting

a particular block or subtree in this widget will result in the reset of the Information panel showing summaries for
that block or subtree alone.

The Statistics Inspector panel

The Information panel shows data information for the active source. If you need a quick summary of the data

produced by all the pipeline modules, you can use the Statistics Inspector panel. It’s accessible from Views >
Statistics Inspector.

Statistics Inspector
Name | Data Type | No. of Cells | Ne. of Points | Memory (MB) | Geemetry Size (MB) Spatial Bounds Temporal Bounds
disk_out_ref.ex2 @& Multi-block Dataset @ 7472 o 8agg 1.589 0.381 [-5.75.5.75].[-5.75.5... |[[ALL]
Sphere2 W Polygonal Mesh @ 12480 o 6242 0538 0.832 [-0.5.05].[-05, 05]... [ALL]
wavelet1 B image (Uniform Recti... @ 8000 o 9261 0.037 0.002 [-10,107,[-10,10],[... |[ALL]
AMRGaussianPulse... [?] Overlapping AMR Da... @ 605 < 986 0.02 0.002 [-2.05].[-2,05].[0.. [ALL]

m Multi-block Dataset |7 7152 10088 2.169 1.103 [-7.88,8.31],[0.8].[... |[0,0.0043]

Fig. 1.34: The Statistics Inspector panel in paraview showing summaries for all pipeline modules.

All of the information on this panel is also presented on the Information panel, except Geometry Size . This
corresponds to how much memory is needed for the transformed dataset used for rendering in the active view. For
example, to render a 3D dataset as a surface in the 3D view, ParaView must extract the surface mesh as a polydata.

Geometry Size represents the memory needed for this polydata with the same memory-size-related caveats as with
the Information panel.

46 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

1.3.3 Getting data information in pvpython

When scripting with ParaView, you will often find yourself needing information about the data. While paraview sets
up filter properties and color tables automatically using the information from the data, you must do that explicitly when
scripting.

In pvpython, for any pipeline module (sources, readers, or filters), you can use the following ways to get information
about the data produced.

>>> from paraview.simple import *
>>> reader = OpenDataFile(".../ParaViewData/Data/can.ex2")

We need to update the pipeline. Otherwise, all of the data
information we get will be from before the file is actually
read and, hence, will be empty.

>>> UpdatePipeline()

>>> dataInfo = reader.GetDataInformation()

To get the number of cells or points in the dataset:
>>> datalInfo.GetNumberOfPoints()

10088

>>> dataInfo.GetNumber0fCells()

7152

You can always nest the call, e.g.:

>>> reader.GetDataInformation() .GetNumberOfPoints()
10088

>>> reader.GetDataInformation() .GetNumberOfCells()
7152

Use source.PointData or source.CellData to get information about
point data arrays and cell data arrays, respectively.

Let's print the available point data arrays.
>>> reader.PointDatal:]
[Array: ACCL, Array: DISPL, Array: GlobalNodeId, Array: PedigreeNodeld, Array: VEL]

Similarly, for cell data arrays:
>>> reader.CellDatal:]
[Array: EQPS, Array: GlobalElementId, Array: ObjectId, Array: PedigreeElementId]

PointData (and CellData) is a map or dictionary where the keys are the names of the arrays, and the values are
objects that provide more information about each of the arrays. In the rest of this section, anything we demonstrate on
PointData is also applicable to CellData .

Let's get the number of available point arrays.
>>> len(reader.PointData)
5

Print the names for all available point arrays.
>>> reader.PointData.keys()

['ACCL', 'DISPL', 'GlobalNodeId', 'PedigreeNodeId', 'VEL']

(continues on next page)

1.3. Understanding Data 47

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

>>> reader.PointData.values()
[Array: ACCL, Array: DISPL, Array: GlobalNodeId, Array: PedigreeNodeld, Array: VEL]

To test if a particular array is present:
>>> reader.PointData.has_key("ACCL")
True

>>> reader.PointData.has_key("--non-existent-array--")
False

From PointData (or CellData), you can get access to an object that provides information for each of the arrays. This
object gives us methods to get data ranges, component counts, tuple counts, etc.

Let's get information about 'ACCL' array.
>>> arrayInfo = reader.PointData["ACCL"]
>>> arrayInfo.GetName ()

'ACCL'

To get the number of components in each tuple and the number
of tuples in the data array:

>>> arrayInfo.GetNumberOfTuples()

10088

>>> arrayInfo.GetNumberOfComponents ()

3

Alternative way for doing the same:

>>> reader.PointData["ACCL"].GetNumberOfTuples()
10088

>>> reader.PointData["ACCL"].GetNumberOfComponents ()
3

To get the range for a particular component, e.g. component 0:
>>> reader.PointData["ACCL"] .GetRange(0)
(-4.965284006175352e-07, 3.212448973499704e-07)

To get the range for the magnitude in cases of multi-component arrays
use -1 as the component number.

>>> reader.PointData["ACCL"].GetRange(-1)

(0.0, 1.3329898584157294e-05)

To determine the data data type for this array:

>>> from paraview import vtk

>>> reader.PointData["ACCL"].GetDataType() == vtk.VTK_DOUBLE

True

The paraview.vtk module provides access to these constants such as
VIK_DOUBLE, VIK_FLOAT, VIK_INT, etc.

Likewise, to test the dataset type, itself:
>>> reader.GetDataInformation() .GetDataSetType() == \

vtk .VTK_MULTIBLOCK_DATA_SET
True

Here’s a sample script to iterate over all point data arrays and print their magnitude ranges:

48 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

>>> def print_point_data_ranges(source):
"""Prints array ranges for all point arrays
for arrayInfo in source.PointData:
get the array's name
name = arrayInfo.GetName()
get magnitude range
range = arrayInfo.GetRange(-1)

print = [, 1" % (name, range[0], range[1])

mirn

Let's call this function on our reader.
>>> print_point_data_ranges(reader)

ACCL = [0.000, 0.000]

DISPL = [0.000, 0.000]

GlobalNodeId = [1.000, 10088.000]
PedigreeNodeId = [1.000, 10088.000]

VEL = [0.000, 5000.000]

Did you know?

The example scripts in this section all demonstrated how to obtain information about the data such as the number of
points and cells, data bounds, and array ranges. However, what they do not show is how to access the raw data itself.
To see how to obtain the full data, please see Section 2.7.11.

1.4 Displaying data

The goal of any visualization process is to produce visual representations of the data. The visual representations are
shown in modules called views. Views provide the canvas on which to display such visual representations, as well as
to dictate how these representations are generated from the raw data. The role of the visualization pipeline is often to
transform the data so that relevant information can be represented in these views.

Referring back to the visualization pipeline from Section 1.1.2, views are sinks that take in input data but do not produce
any data output (i.e., one cannot connect other pipeline modules such as filters to process the results in a view). However,
views often provide mechanisms to save the results as images or in other formats including PDF, VRML, and X3D.

Different types of views provide different ways of visualizing data. These can be broadly grouped as follows:

* Rendering Views are views that render geometries or volumes in a graphical context. The Render View is one
such view. Other Render View-based views, such as Slice Viewand Quad View, extend the basic render view
to add the ability to add mechanisms to easily inspect slices or generate orthogonal views.

e Chart Views cover a wide array of graphs and plots used for visualizing non-geometric data. These include
views such as line charts (Line Chart View), bar charts (Bar Chart View), bagcharts (Bag Chart View
), parallel coordinates (Parallel Coordinates View), etc.

* Comparative Views are used to quickly generate side-by-side views for parameter study, i.e., to visualize the
effects of parameter changes. Comparative variants of Render View and several types of the Chart Views are
available in ParaView.

In this chapter, we take a close look at the various views available in ParaView and how to use these views for displaying
data.

1.4. Displaying data 49

ParaView Users Guide Documentation, Release 5.12.0

1.4.1 Multiple views

eoe Paraiew 5.4.0-RC2-70-g1d7694b 64-bit
2 & B8 » & RG> S o

wA @)
i T S R &

LineChartview1 © & 0 ® ©

Showing s [atrbute: fowcats [precision: 6 - 4

Fig. 1.35: Using multiple views in paraview to generate different types of visualizations from a dataset.

With multiple types of views comes the need for creating and viewing multiple views at the same time. In this section,
we look at how you can create multiple views and lay them out.

Did you know?

Multiple views were first supported in ParaView 3.0. Before that, all data was shown in a single 3D render view,
including line plots!

Multiple views in paraview

paraview shows all views in the central part of the application window. When paraview starts up, the Render View
is created and shown in the application window by default.

New views can be created by splitting the view frame using the Split View controls at the top-right corner of the
view frame. Splitting a view divides the view into two equal parts, either vertically or horizontally, based on the button
used for the split. On splitting a view, an empty frame with buttons for all known types of views is shown. Simply click
on one of those buttons to create a new view of a chosen type.

You can move views by clicking and dragging the title bar for the view (or empty view frame) and dropping it on the
title bar on another view (or empty view frame). This will swap the positions of the two views.

Similar to the notion of active source, there is a notion of active view . Several panels, toolbars, and menus will update
based on the active view. The Display properties section on the Properties panel, for example, reflects the display
properties of the active source in the active view. Similarly, the eyeball icons in the Pipeline Browser show the
visibility status of the pipeline module in the active view. Active view is marked in the UI by a blue border around the
view frame. Only one view can be active at any time in the application.

Besides being able to create multiple views and laying them out in a pane, paraview also supports placing views in
multiple layouts under separate tabs. To create new tabs, use the T button in the tab bar. You can close a tab, which
will destroy all views laid out in that tab, by clicking on the |_| button. To pop out an entire tab as a separate window,

use the | = . button on the tab bar.

50 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

The active view is always present in the active tab. Thus, if you change the active tab, the active view will also be
changed to be a view in the active tab layout. Conversely, if the active view is changed (by using the Python Shell ,
for example), the active tab will automatically be updated to be the tab that contains the active view.

Did you know?

You can make the views of the active layout fullscreen by using View > Fullscreen (layout) (or using the F11 key). You
can also make the active view alone fullscreen by using View > Fullscreen (active view) (or using CTRL + F11 keys).
To return back to the normal mode, use the Esc key.

Multiple views in pvpython

In pvpython, one can create new views using the CreateView function or its variants, e.g., CreateRenderView .

>>> from paraview.simple import *
>>> view = CreateRenderView()

Alternatively, use CreateView.
>>> view = CreateView('"RenderView")

When a new view is created, it is automatically made active. You can manually make a view active by using the
SetActiveView function. Several of the functions available in pvpython will use the active view when no view is
passed as an argument to the function.

Create a view

>>> viewl = CreateRenderView()
Create a second view

>>> view2 = CreateRenderView()

Check if view2 is the active view
>>> view2 == GetActiveView()
True

Make viewl active

>>> SetActiveView(viewl)

>>> viewl == GetActiveView()
True

When using Python Shell in paraview, if you create a new view, it will automatically be placed in the active tab
by splitting the active view. You can manually control the layout and placement of views from Python too, using the
layout API.

In Python, each tab corresponds to a layout.

To get exisiting tabs/layouts

>>> layouts = GetLayouts()

>>> print(layouts)

{('ViewLayoutl', '264'): <paraview.servermanager.ViewLayout object at 0x2e5b7d0>}

To get layout corresponding to a particular view
>>> print(GetLayout(view))
<paraview.servermanager.ViewLayout object at 0x2e5b7d0>

If view is not specified, active view is used
(continues on next page)

1.4. Displaying data 51

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

>>> print(GetLayout())
<paraview.servermanager.ViewLayout object at 0x2e5b7d0>

To create a new tab
>>> new_layout = servermanager.misc.ViewLayout(registrationGroup="1layouts")

To split the cell containing the view, either horizontally or vertically
>>> view = GetActiveView()
>>> layout = GetLayout(view)
>>> locationId = layout.SplitViewVertical(view=view,
fraction=0.5)
fraction is optional, if not specified the frame is split evenly.

To assign a view to a particular cell.
>>> view2 = CreateRenderView()
>>> layout.AssignView(locationId, view2)

1.4.2 View properties

Just like parameters on pipeline modules, such as readers and filters, views provide parameters that can be used for
customizing the visualization such as changing the background color for rendering views and adding title texts for
chart views. These parameters are referred to as View Properties and are accessible from the Properties panel in
paraview.

View properties in paraview

Similar to properties on pipeline modules like sources and readers, view properties are accessible from the Properties
panel. These are grouped under the View section. When the active view is changed, the Properties panel updates to
show the view properties for the active view. Unlike pipeline modules, however, when you change the view properties,
they affect the visualization immediately, without use of the Apply button.

Did you know?

It may seem odd that View and Display properties on the Properties panel don’t need to be Apply -ed to take effect,
while properties on pipeline modules like sources, readers and filter require you to hit the Apply button.

To understand the reasoning behind that, we need to understand why the Apply action is needed in the first place.
Generally, executing a data processing filter or reader is time consuming on large datasets. If the pipeline module
keeps on executing as you are changing the parameter, the user experience will quickly deteriorate, since the pipeline
will keep on executing with intermediate (and potentially invalid) property values. To avoid this, we have the Apply
action. This way, you can set up the pipeline properties to your liking and then trigger the potentially time consuming
execution.

Since the visualization process in general focuses on reducing data to generate visual representations, the rendering
(broadly speaking) is less time-intensive than the actual data processing. Thus, changing properties that affect rendering
are not as compute-intensive as transforming the data itself. For example, changing the color on a surface mesh is not
as expensive as generating the mesh in the first place. Hence, the need to Apply such properties becomes less relevant.
At the same time, when changing display properties such as opacity, you may want to see the result as you change the
property to decide on the final value. Hence, it is desirable to see the updates immediately.

52 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Of course, you can always enable Auto Apply to have the same immediate update behavior for all properties on the
Properties panel.

View properties in pvpython

In pvpython, once you have access to the view, you can directly change view properties on the view object. There are
several ways to get access to the view object.

1. Save reference when a view is created
>>> view = CreateView("RenderView")

2. Get reference to the active view.
>>> view = GetActiveView()

The properties available on the view will change based on the type of the view. You can use the help function to
discover available properties.

>>> view = CreateRenderView()
>>> help(view)

Help on RenderView in module paraview.servermanager object:

class RenderView(Proxy)
| View proxy for a 3D interactive render
| view.
|
| m e e

Data descriptors defined here:

I
I
| CenterAxesVisibility

| Toggle the visibility of the axes showing the center of
| rotation in the scene.
I

I

I

|

CenterOfRotation
Center of rotation for the interactor.

Once you have a reference to the view, you can then get/set the properties.

Get the current value
>>> print(view.CenterAxesVisibility)
1

Change the value
>>> view.CenterAxesVisibility = 0

1.4. Displaying data 53

ParaView Users Guide Documentation, Release 5.12.0

1.4.3 Display properties

Display properties refers to available parameters that control how data from a pipeline module is displayed in a view,
e.g., choosing to view the output mesh as a wireframe, coloring the mesh using a data attribute, and selecting which
attributes to plot in chart view. A set of display properties is associated with a particular pipeline module and view.
Thus, if the data output from a source is shown in two views, there will be two sets of display properties used to control
the appearance of the data in each of the two views.

Display properties in paraview

Display properties are accessible from the Display section on the Properties panel. When the active source or
active view changes, this section updates to show the display properties for the active source in the active view, if
available. If the active source produces data that cannot be shown (or has never been shown) in the view, then the
Display properties section may be empty.

Similar to view properties, display property changes are immediately applied, without requiring the use of the Apply
button.

Display properties in pvpython

To access display properties in pvpython, you can use SetDisplayProperties and GetDisplayProperty methods.

Using SetDisplayProperties/GetDisplayProperties to access the display
properties for the active source in the active view.

>>> print(GetDisplayProperties("Opacity"))
1.0

>>> SetDisplayProperties(Opacity=0.5)

Alternatively, you can get access to the display properties object using GetDisplayProperties and then changing
properties directly on the object.

Get display properties object for the active source in the active view.
>>> disp = GetDisplayProperties()

You can also save the object returned by Show.
>>> disp = Show()

Now, you can directly access the properties.
>>> print(disp.Opacity)
0.5

>>> disp.Opacity = 0.75

As always, you can use the help method to discover available properties on a display object.

>>> disp = Show()
>>> help(disp)
>>> help(a)

Help on GeometryRepresentation in module paraview.servermanager object:

(continues on next page)

54 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

class GeometryRepresentation(SourceProxy)
| ParaView's default representation for showing any type of
dataset in the render view.

|
I
| Method resolution order:

| GeometryRepresentation

| SourceProxy

| Proxy

| __builtin__.object

I

| __

Data descriptors defined here:

CenterStickyAxes
Keep the sticky axes centered in the view window.

ColorArrayName
Set the array name to color by. Set it to empty string
to use solid color.

I
I
|
I
I
I
I
|
I
I
I
| ColorAttributeType
I

1.4.4 Render View

The Render View is the most commonly used view in ParaView. It is used to render geometries and volumes in a 3D
scene. This is the view that you typically think of when referring to 3D visualization. The view relies on techniques to
map data to graphics primitives such as triangles, polygons, and voxels, and it renders them in a scene.

Most of the scientific datasets discussed in Section 1.3.1 are composed of meshes. These meshes can be mapped to
graphics primitives using several of the established visualization techniques. That is, you can compute the outer surface
of these meshes and then render that surface as filled polygons, you can just render the edges, or you can render the data
as a nebulous blob to get a better understanding of the internal structure in the dataset. Plugins, like Digital Rock
Physics, can provide additional ways of rendering data using advanced techniques that provide more insight into the
data.

If the dataset doesn’t represent a mesh, e.g., a table (Section 1.3.1), you cannot directly show that data in this view.
However, in such cases, it may be possible to construct a mesh by mapping columns in the table to positions to construct
a point cloud, for example.

1.4. Displaying data 55

ParaView Users Guide Documentation, Release 5.12.0

ece Paraview 5.4.0-RC2-70-g147694b 64-bit

PR BE Lo F kG AP DS
B
=]}

T wee B X aRBRIBABLCP BECEG

E90 03 POESH Clgcea st
ee Bespen (e

B buikin, » 0,08 |09 0 B L A e i A 22 R Renderviewl © 5 O O O
@ @ iron proteinytk

@ @ Contourl
a B Clipt

Information
20 Properties
Reser K Delete i 4

OPAC

= Properties (Clip1) 2 & 0 W

= Display (UnstructuredGridi 31 & &

styling
Opacity 057
Backface Styling

Backface Opacity 4

= View (Render View) -~

Fig. 1.36: paraview using Render View to generate 3D visualizations from a dataset.

Understanding the rendering process

Render View uses data processing techniques to map raw data to graphics primitives, which can then be rendered in
a 3D scene. These mapping techniques can be classified as follows:

* Surface rendering methods provide general rendering by rendering a surface mesh for the dataset. For polygonal
datasets (Section 1.3.1), this is simply the raw data. In cases of other datasets including structured (Section 1.3.1,
Section 1.3.1, Section 1.3.1) and unstructured (Section 1.3.1) grids, this implies extracting a surface mesh for
all external faces in the dataset and then rendering that mesh. The surface mesh itself can then be rendered as a
filled surface or as a wireframe simply showing the edges, etc.

e Slice rendering is available for uniform rectilinear grid datasets (Section 1.3.1) where the visualization is gen-
erated by simply rendering an orthogonal slice through the dataset. The slice position and alignment can be
selected using the display properties.

* Volume rendering generates rendering by tracing a ray through the dataset and accumulating intensities based on
the color and opacity transfer functions set.

Each of these techniques are referred to as representations. When available, you can change the representation type
from the display properties on the Properties panel or using the Representation Toolbar .

Render View in paraview

Creating a Render View

Unless you changed the default setting, a new Render View will be created when paraview starts up or connects to
a new server. To create a Render View in paraview, split or close a view, and select the Render View button. You
can also convert a view to a Render View (or any other type) by right-clicking on the view’s title bar and picking from
the Convert To sub-menu. It simply closes the chosen view and creates a selected view type in its place.

You can use the Pipeline Browser to control the visibility of datasets produced by pipeline modules in this view.
The eyeball icons reflect the visibility state. Clicking on the eyeball icon will toggle the visibility state. If no eyeball
icon is shown, it implies that the pipeline module doesn’t produce a data type that can be directly shown in the active

56 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

view, e.g., if the module produced a table, then when Render View is active, there will not be any eyeball icon next to
that module.

Interactions

You can interact with the Render View to move the camera in the scene for exploring the visualization and setting up
optimal viewing angles. Each of the three mouse buttons, combined with keyboard modifier keys (CTRL or , and),
move the camera differently. The interaction mode can be changed from the Camera tab in the Settings dialog, which
is accessible from Tools > Settings (or ParaView > Preferences on macOS). There are six interaction modes available
in ParaView:

* Pan for translating the camera in the view plane.

* Zoom for zooming in or out of the center of the view.

Roll for rolling the camera.
* Rotate for rotating the camera around the center of rotation.
* Zoom To Mouse for zooming in or out of the projected point under the mouse position.

* Multi Rotate for allowing azimuth and elevation rotations by dragging from the middle of the view and rolls by
dragging from the edges.

* Rotate Skybox for rotating the environment skybox. Useful when using Environment Lighting and PBR shader.

The default interactions options are as follows:

Modifier Left Button Middle Button Right Button

Rotate Pan Zoom
Roll Rotate Pan
CTRL or Rotate Skybox Rotate Zoom To Mouse

Usually in ParaView, you are interacting with a 3D scene. However, there are cases when you are working with a 2D
dataset such as a slice plane or a 2D image. In such cases, paraview provides a separate set of interaction options
suitable for 2D interactions. You can toggle between the default 3D interaction options and 2D interaction options by
clicking the 2D or 3D button in the view toolbar. The default interaction options for 2D interactions are as follows:

Modifier Left Button Middle Button Right Button

Pan Roll Zoom
Zoom Zoom Zoom To Mouse
CTRLor Roll Pan Rotate

By default, ParaView will determine whether your data is 2D or 3D when loading the data and will set the interaction
mode accordingly. This behavior can be changed in the Settings dialog by changing the Default Interaction
Mode setting under the Render View tab. The default setting is “Automatic, based on the first time step”, but the
setting can be changed to “Always 2D” or “Always 3D” in case you wish to force the interaction mode.

1.4. Displaying data 57

ParaView Users Guide Documentation, Release 5.12.0

View properties

Several of the view properties in Render View control the annotations shown in the view (Fig. 1.37).

0 g‘ PTOped s

® Delete 4

4 Properties (Spheret)] %)
o Display (GeomoetryReprose & o

= View [Render View) &3)) i

Axes Grid
Center Axes Visibility
Orientation Axes
Orientation Axes Visibility
Orientation Axes Interactivity
Onentation Axes Labal Color

T Orientation Axes Outling Coler

Hidden Line Removal
Camera Parallel Projection
Background
Single color H

® Color = Restore Default

Fig. 1.37: The Properties panel showing view properties for Render View .

Axes Grid refers to an annotation axis rendered around all datasets in the view (Fig. 1.38). You use the checkbox next
tothe Edit Axis Grid button to show or hide this annotation. To control the annotation formatting, labels, etc., click
onthe Edit Axes Grid... button. The Axes Grid is described in Chapter Section 2.11.

The Center axes refers to axes rendered in the scene positioned as the center of rotation, i.e., the location is space around
which the camera revolves during Rotate camera interaction. Center Axes Visibility controls the visibility of
the center axes.

The Orientation axes is the widget shown at the lower-left corner by default, which is used to get a sense for the
orientation of the scene. The properties grouped under the Orientation Axes group allow you to toggle the visibility
and the interactivity of this widget. When interactivity is enabled, you can click and drag this widget to the location of
your choosing in the scene.

You can also change the Background used for this view. You can either set it as a Single color or as a Gradient
changing between two colors, or you can select an Image (or texture) to use as the background.

There are two advanced properties you may wish to set: hidden line removal and camera parallel projection. The
Hidden Line Removal option can be enabled to hide lines that would be occluded by a solid object when drawing
objects in a Wireframe representation. If you want to render your data using parallel projection instead of the default
perspective projection you can check the Camera Parallel Projection checkbox.

58 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Fig. 1.38: Axes Grid is used to annotate data bounds in Render View .

Display properties

3D Glyphs
Feature Edges
Outline

Point Gaussian
Points

Surface
Surface LIC

Wireframe

One of the first (and probably the most often used) display properties is Representation . Representation allows
you to pick one of the mapping modes. The options available depend on the data type, as well as the plugins loaded.
While all display properties are accessible from the advanced view for the Properties panel, certain properties may
be shown/hidden from the default view based on the chosen representation type.

The Outline representation can be used to render an outline for the dataset. This is arguably the fastest way of
rendering the dataset since only the bounding box is rendered. Scalar coloring options, i.e., selecting an array with
which to color, has no effect on this representation type. You can still, however, change the Solid Color to use as
well as the Opacity . To change the color, select Solid Color in the combo-box under Coloring , and then click
Edit to pick the color to use. To change the opacity, simply change the Opacity slider. O implies total transparency
and, hence, invisiblity, while 1 implies totally opacity.

Did you know?

Rendering translucent data generally adds computational costs to the rendering process. Thus, when rendering large
datasets, you may want to leave changing opacities to anything less than 1 to the very end, after having set up the
visualization. In doing so, you avoid translucent geometries during exploration, but use them for generating images or
screenshots for presentations and publications.

Points, Surface, Surface With Edges, and Wireframe rely on extracting the surface mesh from the dataset and

1.4. Displaying data 59

ParaView Users Guide Documentation, Release 5.12.0

Outline Points oo Slice

O
SC

Taco g) surface With Edges I Volire

Fig. 1.39: Different renderings generated by rendering data produced by the Wavelet source as outline, points, slice,
surface, surface with edges, and volume.

then rendering that either as a collection of points, as solid surface, as solid surface with cell boundaries highlighted,
or as a wireframe of cell boundaries only. Feature Edges is a subset of Wireframe consisting of prominent edges
on the surface such as edges between cells that form a sharp angle or edges with only one adjacent cell. For these
representations, you can either set a single solid color to use, as with Outline , or select a data array to use for scalar
coloring (also known as pseudocoloring).

Two other representations are available for most datasets. 3D Glyphs draws a copy of a 3D geometry (e.g., arrow, cone,
or sphere, etc.), or glyph, at a subset of points in the dataset. These glyphs can be set to a single color or pseudocolored
by a data array. The Point Gaussian representation is similar, but instead of drawing 3D geometry at every point, it
draws a 2D image sprite that may have transparency. The image drawn can be one of several predefined image sprites
such as Gaussian Blur, Sphere, Black-edged circle,Plain cirlce, Triangle, or Square outline, or
a custom sprite can be defined with custom GLSL shader code.

Lastly, the SurfaceLIC representation is available for surface datasets with vector point data arrays. LIC stands for
line integral convolution, which is a visualization technique that shows the direction of flow as a noise pattern smeared
in the direction of flow.

Did you know?

For visualizations that feature 3D glyphs, it is typically much faster to use the 3D Glyph representation rather than
the Glyph filter. This is because the glyph representation draws the same geometry at many different locations (a
graphics technique called geometry instancing) while the Glyph filter makes many copies of the same source geometry
and renders the resulting mesh in its entirety. Generating all the glyphs and rendering them takes potentially a lot of
memory and is typically slower to render, so you should use the 3D Glyph representation when possible.

Next, we will cover each of the property groups available under Display properties. Several of these are marked as
advanced. Accordingly, you may need to either toggle the panel to show advanced properties using the button or search
for it by name using the search box.

Display properties under Coloring allow you to set how the dataset is colored. To select a single solid color to use
to fill the surface or color the wireframe or points, select Solid Color in the combo-box, and then click Edit . That
will pop up the standard color chooser dialog from which you can pick a color to use.

If instead you want to pseudocolor using an attribute array available on the dataset, select that array name from the

60 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

4.2e+00

Fig. 1.40: An example of the SurfaceLIC representation showing the direction of a vector data array and colored by
a different scalar array showing (Density).

Coloring
@ solid Color ¢
iﬂl Edit # C t =l

Scalar Coloring
Map Scalars
Interpolate Scalars Before Mapping

Use Man Color For Missing Arrays

1.4. Displaying data 61

ParaView Users Guide Documentation, Release 5.12.0

combo-box. For multi-component arrays, you can pick a particular component or Magni tude to use for scalar coloring.
ParaView will automatically set up a color transfer function it will use to map the data array to colors. The default range
for the transfer function is set up based on the Transfer Function Reset Mode general setting in the Settings
dialog when the transfer function is first created. If another dataset is later colored by a data array with the same name,
the range of the transfer function will be updated according to the Automatic Rescale Range Mode property in the
Color Map Editor. To reset the transfer function range to the range of the data array in the selected dataset, you can
use the Rescale button. Remember that, despite the fact that you can set the scalar array with which to color when
rendering as Outline , the outline itself continues to use the specified solid color.

Scalar Coloring properties are only relevant when you have selected a data array with which to pseudocolor. The
Map Scalars checkbox affects whether a color transfer function should be used (Fig. 1.41). If unchecked, and the
data array can directly be interpreted as colors, then those colors are used directly. If not, the color transfer function
will be used. A data array can be interpreted as colors if, and only if, it is an unsigned char, float, or double array
with two, three, or four components. If the data array is unsigned char, the color values are defined between 0 and
255 while if the data array is float or double, the color values are expected to be between 0 and 1. Interpolate
Scalars Before Mapping controls how color interpolation happens across rendered polygons. If on, scalars will
be interpolated within polygons, and color mapping will occur on a per-pixel basis. If off, color mapping occurs at
polygon points, and colors are interpolated, which is generally less accurate. Refer to the Kitware blog [PatMarion] for
a detailed explanation of this option. Use Nan Color For Missing Arrays is a property that, if enabled, will use
the special color designated for NaN values in a dataset to also be used as the color for parts of a composite dataset that
are missing the scalars array used for color mapping.

Map Scalars: Off Map Scalars: On

Fig. 1.41: The Map Scalars property can be used to avoid using a transfer function and directly interpreting the array
values as colors, if possible.

Polar Axes Edit

The Polar Axes checkbox toggles polar axes shown around the data. Many parameters can be accessed via an Edit
button alongside it. The parameters include angles, tick range, labels, logarithmic mode, ellipse ratio and more.

Styling properties include Opacity (useful when rendering translucent geometries), Point Size (used to control
size of points rendered with using Points representation), and Line Width (used to control the thickness of lines
when rendering as Wireframe or that of the edges when rendering as Surface With Edges.

Lighting properties affect the shading for rendered surfaces. Interpolation allows you to pick between Flat and
Gouraud shading. Specular , together with Specular Color and Specular Power , affects the shininess of the
surface. Set this to a non-zero value to render shiny, metallic surfaces.

62 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

._..._.,':_II_[._.' eyl L L o

| o e F i FRET R 1
| ek illag | i Curos g Py el o) R

B s =

Fig. 1.42: A Polar Axes usage example.

Styling

Opacity —_—) [1]
Point Size [2]
Line Width [1]
Lighting Tl
Interpolation Iﬁ'“"'m“d =
Specular = [g

[O Specular Color

Specu|ar Power |:U [100

1.4.

Displaying data

63

ParaView Users Guide Documentation, Release 5.12.0

Common Errors

Specular highlights can lead to misinterpretation of scalar values when using scalar coloring, since the color shown
on the shiny part of the surface will not correspond to any color on the color transfer function. Hence, it is generally
advisable to use specular highlights on surfaces colored with a single solid color and not on those using scalar coloring
(or pseudocoloring).

With specular highlights Without specular highlights

-

m|||w“uiiwm HHI‘W“““WHH

Edge Styling

l. Edge Color E]

Edge Styling allows you to set the Edge Color with which to color the edges when using Surface With Edges
representation.

Backface Styling

Backface

: Follow Frontface -
Representation [|

lO Backface Ambient Color

[O Backface Diffuse Color

Backface Opacity —————() [1

Backface Styling provides advanced controls to fine-tune the rendering by controlling front and back faces. A front
face is any mesh face facing the camera, while a back face is the one facing away from the camera. By choosing to
Cull Frontface or Cull Backface, or by selecting a specific representation type to use for the backface, you can
customize your visualizations.

Transforming properties can be used to transform the rendered data in the scene without affecting the raw data itself.
Thus, if you apply filters on the data source, it will indeed be working with the untransformed data. To transform the
data itself, you should use the Transform filter.

The Coordinate Shift Scale Method is used to choose how to normalize point coordinates to improve rendering
quality. Mesh points are sent to the GPU as single-precision float data which can result in resolution issues due to
limited precision. VTK includes a variety of methods to normalize the point coordinates to a better range for single-
precision floats prior to sending them to the GPU. Auto Shift Scale is a good setting that should work for most
datasets - it recomputes a shift and scale factor according to a heuristic involving dataset size and position relative to
the origin. Always Auto Shift Scale recomputes the shift and scale every time. Auto Shift Only only shifts

64 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Transforming

Translation 0 0 0
Scale 1 1 1
Orientation 0 0 0
Orngin 0 0 0

the data - this is useful when data is far away from the origin. Near Focal Plane Shift Scale and Focal Point
Shift Scale works based on the current camera near clipping point and viewpoint, respectively. This makes it the
most robust setting, especially for very large datasets, but it will renormalize the points occasionally as the camera’s
settings change. Renormalizing points requires reuploading the data to the GPU, so there may be a performance cost
with these last methods.

Miscellancous

+ Pickable

Tt ure None

Triangulate
Monlinear
Subdivision Level
Block Colors
Distinet Values

Use Data Partitions

Several properties are available under the Miscellaneous group. Uncheck the Pickable option if you want the
dataset to be ignored when making selections. If the dataset has a texture coordinates array, you can apply a texture to
the dataset surface using the Texture combo-box. Choose Load to load a texture or apply a previously loaded texture
listed in the combo-box. If your dataset doesn’t have texture coordinates, you can create them by applying one of
Texture Map to Cylinder, Texture Map to Sphere, or Texture Map To Plane filters, or using the filters
Calculator or Programmable Filter.

The Triangulate option is useful for rendering objects with non-convex polygons. It comes with some additional
processing cost for converting polygons to triangles, so it should be used only when necessary.

Fig. 1.43: A dataset made of quadratic tetra hedra displayed with 1, 2, and 3 levels of nonlinear subdivision.

The property Use Shader Replacements enables you to customize the shader code VTK uses for rendering by
specifying shader replacements with a JSON string. The JSON string can be a single node or an array of nodes with
the following properties:

* “type”: specifies the type of shader the replacement is about. It can be either “vertex”, “fragment” or “geometry”.

» “original”: specifies the original string to be replaced in the shader code. This string is generally a pattern defined
by the mapper vtkOpenGLPolyDataMapper at specific locations of the shader GLSL source code.

1.4. Displaying data 65

ParaView Users Guide Documentation, Release 5.12.0

* “replacement”: specifies the replacement string in GLSL source code. Note that the Json parser supports multiple
lines entries.

Here’s an example of a simple shader replacement (draw all the fragments in full red color without any shading con-
sideration):

{

"type": "fragment",

"original": "//VTIK::Light::Impl",

"replacement": '"gl_FragData[0]=vec4(1.0,0.0,0.0,1.0);"
}

The Nonlinear Subdivision Level property is used when rendering datasets with higher- order elements. Use
this to set the subdivision level for triangulating higher order elements. The higher the value, the smoother the edges.
This comes at the cost of more triangles and, hence, potentially, increased rendering time.

The Block Colors Distinct Values property sets the number of unique colors to use when coloring multiblock
datasets by block ID. Finally, Use Data Partitions controls whether data is redistributed when it is rendered translu-
cently. When off (default value), data is repartitioned by the compositing algorithm prior to rendering. This is typically
an expensive operation that slows down rendering. When this option is on, the existing data partitions are used, and the
cost of data restribution is avoided. However, if the partitions are not sortable in back-to-front order, rendering artifacts
may occur.

Volume Rendering

Volume Rendering Po—
Mode

Shade

Volume Rendering options are available if the data can be volume rendered. You can pick a specific type of Volume
Rendering Mode , although the default (Smart) should work in most cases, since it attempts to pick a volume
rendering mode suitable for your data and graphics setup. To enable gradient-based shading, check Shade , if available.

Slicing

Slice Direction XY Plane -l

slice : 10 |

&

Slicing properties are available when the S1ice representation type is present. These allow you to pick the orthogonal
slice plane orientation and slice offset using Slice Direction and the Slice slider.

Render View in pvpython

Creating a Render View

You use CreateRenderView or CreateView functions to create a new instance of a render view.

>>> from paraview.simple import *
>>> view = CreateRenderView()

Alternatively, use CreateView.
>>> view = CreateView('"RenderView")

noindent You use Show and Hide to show or hide data produced by a pipeline module in the view.

66 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

>>> source = Sphere()
>>> view = CreateRenderView()

Show active source in active view.
>>> Show()

Or specify source and view explicitly.
>>> Show(source, view)

Hide source in active view.
>>> Hide(source)

Interactions

Since pvpython is designed for scripting and batch processing, it has limited support for direct interaction with the
view. To interact with a scene, invoke the Interact function in Python.

[Interact()

More often, you will programmatically change the camera as follows:

Get camera from the active view, if possible.
>>> camera = GetActiveCamera()

or, get the camera from a specific render view.
>>> camera = view.GetActiveCamera()

Now, you can use methods on camera to move it around the scene.

Divide the camera's distance from the focal point by the given dolly value.
Use a value greater than one to dolly-in toward the focal point, and use a
value less than one to dolly-out away from the focal point.

>>> camera.Dolly(10)

Set the roll angle of the camera about the direction of projection.
>>> camera.Roll(30)

Rotate the camera about the view up vector centered at the focal point. Note
that the view up vector is whatever was set via SetViewUp, and is not

necessarily perpendicular to the direction of projection. The result is a

horizontal rotation of the camera.

>>> camera.Azimuth(30)

Rotate the focal point about the view up vector, using the camera's position
as the center of rotation. Note that the view up vector is whatever was set
via SetViewUp, and is not necessarily perpendicular to the direction of

projection. The result is a horizontal rotation of the scene.

>>> camera.Yaw(10)

Rotate the camera about the cross product of the negative of the direction
of projection and the view up vector, using the focal point as the center
of rotation. The result is a vertical rotation of the scene.

(continues on next page)

1.4. Displaying data 67

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

>>> camera.Elevation(10)

Rotate the focal point about the cross product of the view up vector and the
direction of projection, using the camera's position as the center of

rotation. The result is a vertical rotation of the camera.

>>> camera.Pitch(10)

Alternatively, you can explicitly set the camera position, focal point, view up, etc,. to explicitly place the camera in the
scene.

>>> camera.SetFocalPoint(0, 0, 0)

>>> camera.SetPosition(0, 0, -10)

>>> camera.SetViewUp(0, 1, 0)

>>> camera.SetViewAngle (30)

>>> camera.SetParallelProjection(False)

If ParallelProjection is set to True, then you'll need

to specify parallel scalar as well i.e. the height of the viewport in

world-coordinate distances. The default is 1. Note that the “scale'

parameter works as an “inverse scale' where larger numbers produce smaller
images. This method has no effect in perspective projection mode.

>>> camera.SetParallelScale(1)

View properties

In pvpython, view properties are directly accessible on the view object returned by CreateRenderView or
GetActiveView.

Once you get access to the view properties objects, you can then set properties on it similar to properties on pipeline
modules such as sources, filters, and readers.

>>> view = GetActiveView()

Set center axis visibility
>>> view.CenterAxesVisibility = 0

Or you can use this variant to set the property on the active view.
>>> SetViewProperties(CenterAxesVisibility=0)

Another way of doing the same
>>> SetViewProperties(view, CenterAxesVisibility=0)

Similarly, you can change orientation axes related properties
>>> view.OrientationAxesVisibility = 0
>>> view.OrientationAxesLabelColor = (1, 1, 1)

68 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Display properties

Similar to view properties, display properties are accessible from the display properties object or using the
SetDisplayProperties function.

>>> displayProperties = GetDisplayProperties(source, view)
Both source and view are optional. If not specified, the active source
and active view will be used.

Now one can change properties on this object
>>> displayProperties.Representation = "Outline"

Or use the SetDisplayProperties API.

>>> SetDisplayProperties(source, view, Representation=Outline)

Here too, source and view are optional and when not specified,
active source and active view will be used.

You can always use the help function to get information about available properties on a display properties object.

1.4.5 Line Chart View

- 9
ParaView 4.1.0-612-95347e18 64-bit [

Fle Edit View Sources Fiters Tools Macros Help
pEBE» F?2®K KAD>DHME Tmelo I

0 I B I H% SHENLUAE 206G B90PBPOSLO
Pipeline Browser B | ovLayout #1x \ |
B buitin: L EE oe[o]x] & & & % & o[B[o]x)
@ @iron protein vtk 2% Intensity /s Probe Location
>

@ L@outiineo

properties | Information |
Properties B

= Properties (PlotOverLine0)
Probe Type | High Resolution Line Seurce |~
%] Show Line
Point1 |0 o 0
Point2 (67 67 67
X Axis
Y Axis
Z Axis

Resolution 100

Note: Move mouse and use 'P' key to
change point position

= Display

4k View (Render\View)

o0 80 100 120
Probe location

Fig. 1.44: paraview using Line Chart View to plot data values probed along a line through the dataset using Plot
Over Line filter.

Line Chart View can be used to plot data as a line plot representing changes in dependent variables against an
independent variable. Using display properties, you can also show scatter plots in this view. This view and other
charting views in ParaView follow a similar design, where you pick attribute arrays to plot using display properties,
and they are plotted in the view. How those values get plotted depends on the type of the view: Line Chart View
draws a line connecting sample points, Bar Chart View renders bars at each sample point, etc.

One of the most common ways of showing a line plot is to apply the Plot Over Line filter to any dataset. This
will probe the dataset along the probe line specified. You then plot the sampled values in the Line Chart View .
Alternatively, if you have a tabular dataset (i.e. vtkTable), then you can directly show the data in this view.

1.4. Displaying data 69

ParaView Users Guide Documentation, Release 5.12.0

Did you know?

You can plot any arbitrary dataset, even those not producing vtkTable outputs, by using the Plot Data filter. Remem-
ber, however, that for extremely large datasets, while Render View may use parallel rendering strategies to improve
performance and reduce memory requirements, chart views rarely, if ever, support such parallel strategies.

Understanding plotting

Line Chart View plots data arrays. For any dataset being shown in the view, you first select which data array is to
be treated as the independent variable and plotted along the x-axis. Then, you select which arrays to plot along the
Y-axis. You can select multiple of these and setup properties for each of the series so they are rendered with different
colors and line styles. Since data arrays in VTK datasets are associated with cells or points, and the two are not directly
comparable to one another, you can only pick arrays associated with one type of attribute at any time.

Line Chart View in paraview

Creating a Line Chart View

Similar to creating Render View, you can split the viewport or convert an existing view to Line Chart View. Line
Chart View will also be automatically created if you apply a filter that needs this view, e.g., the Plot Over Line
filter.

Did you know?

If you generate lengthy data for the Line Chart View, the default variables that are selected may be slow to adjust.
You can change paraview’s default behavior to initially load no variables at all by selecting the Load No Chart
Variables checkbox under Settings/General/Properties Panel Options.

® @ Settings

Genera I0 Camera RenderView Represented Attributes Color Palette

chart

Properties Panel Options

Load No Chart Variables: Do not load any variables when loading a 2D chart.

Interactions

Interactions with the chart view result in changing the plotted axes ranges. You can left-click and drag to pan, i.e.,
change the origin. To change the range on either of the axes, you can right-click and drag vertically and/or horizontally
to change the scale on the vertical axes and/or horizontal axes, respectively.

You can also explicitly specify the axes range using view properties.

70 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

View properties

The view properties for Line Chart View are grouped as properties that affect the view and those that affect each of
the potential four axes.

Tithe

Chart Tithe & S(TIME} to disp
Chart Title Properties
Arial w4 Ha .‘ B |

Annotation

' Show Legend
Legend Location Tao ~

To set a title, use Chart Title . Title text properties such as font, size, style, and alignment with respect to the chart
can be set under Chart Title Properties . To toggle the visibility of the legend, use Show Legend . While you
cannot interactively place the legend in this view, you can use Legend Location to place it at one of the corners.

Title
Chart Title £ ITIMEY ¢t

Chart Title Properties
#rial s 4 e B |
Annotation

+ Show Legend

Legend Location TapRight

L)

There are four axes possible in this view: left, bottom, top, and right. The top and right axes are shown only when
some series is set to use those. (We will cover this in the Display properties subsection.) For each of the axes, you can
set a title (e.g., Left Axis Title,Bottom Axis Title, etc.) and adjust the title font properties. You can turn on
a grid with a customizable color by checking the Show Left Axis Grid, for example.

Next, you can customize the axes ranges. You can always simply interact with the mouse to set the axes ranges.
To precisely set the range, check the Axis Use Custom Range for the appropriate axis, e.g., Bottom Axis Use
Custom Range for fixing the bottom axis range, and then specify the data values to use for the min and the max.

The labels on the axes are, by default, automatically determined to avoid visual clutter. By default, the axis labels are
arranged on a linear scale, but by enabling the Axis Log Scale option you can use log scaling instead. In addition,
you can override the default labelling strategy for any of the axes separately and, instead, specify the locations to label
explicitly. This can be done by checking Axis Use Custom Labels for a particular axis, e.g., Bottom Axis Use
Custom Labels. When checked, a list widget will be shown where you can manually add values at which labels will
be placed.

For generating log plots, simply check the corresponding Axis Use Log Scale,e.g.,Left Axis Use Log Scale
to use log scale for Y-axis (Fig. 1.45). Note that log scale should only be used for an axis with a non-zero positive
range, since the log of a number less than or equal to 0 is undefined.

1.4. Displaying data 71

ParaView Users Guide Documentation, Release 5.12.0

- 9
ParaView 4.1.0-612-g5347e18 64-bit L

Fle Edit View Sources Fiters Tools Macros Help

pEBEOLaF?& KADDPME mp :
B : - & 2 GG BEOPEREE &
Pipeline Browser X | OLayout #1x | +
@ builtin: ¥ Axis using Log scale 120 ¥ Auis not using linear scale
@ vaveleto
®

properties |_information
Properties BIx
% Delete ?

50 80
title

= Properties (PlotOverLineo) H 0
4 Display (XYChartRepresentation) |

= View (xYChartview)

Title

Chart Title

20 ©
Chart Title
Alignment

Center -l

Chart Title Properties @
Arial -1 Ze HB|1

Left Axis

Left Axis Title
Left Axis Title Properties

Arial -2 e HBll1}

Fig. 1.45: Differences between line charts when using log scale for the Y-axis.

Display properties

Attribute Type | ppint Data =

Display properties allow you to setup which series or data arrays are plotted in this view. You start by picking the
Attribute Type . Select the attribute type that has the arrays of interest. For example, if you are plotting arrays
associated with points, then you should pick Point Data .) Arrays with different associations cannot be plotted
together. You may need to apply filters such as Cell Data to Point Data or Point Data to Cell Data to
convert arrays between different associations to do that.

X Axis Parameters

Use Index For XAxis

X Array Name | grc_|length -

Properties under X Axis Parameters allow you to select the independent variable plotted on the X axis by choosing
the X Array Name . If none of the arrays are appropriate, you can choose to use the element index in the array as the
X axis by checking Use Index for XAxis.

Series Parameters control series or data arrays plotted on the Y-axis. All available data arrays are lists in the table
widget that allows you to check/uncheck a series to plot in the first column. The second column in the table shows the
associated color used to plot that series. You can double-click the color swatch to change the color to use. By default,
ParaView will try to pick a palette of discrete colors. The third column lets you set the opacity of the series plot
elements. The fourth column (Variable) shows the name of the variable to plot. The fifth column (Legend Name)
shows the label to use for that series in the legend. By default, it is set to be the same as the array name. You can
double-click to change the name to your choice, e.g., to add units.

Other series parameters include Line Thickness,Line Style, Marker Style, and Marker Size. To change any
of these, highlight a row in The Series Parameters widget, and then change the associated parameter to affect the
highlighted series. You can change properties for multiple series and can select multiple of them by using the CTRL (or

72 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Series Parameters

2] Variable Legend Name v
@ G Paints_Magnitude Paints_Magnitude
@ G Points_X Points_X £
@ G Peints_Y Peints_Y
@ G Pontsz Points_Z
® G RTData RTData
® G arc_length arc_length
. 3 vtkValidPointMask vtkValidPointMask
Line Thickness 2.0 -
Line Style Solid ﬂ
Marker Style None H
Marker Size 4.0 B
Chart Axes Bottom-Left i

)and keys.

Using Chart Axes, you can change which axes on which a series is shown. The default is Bottom-Left , but you
can change it to be Bottom-Right , Top-Left , or Top-Right to accommodate series with widely different ranges in

the same plot.

Line Chart View in pvpython

The principles involved in accessing Line Chart View from pvpython are similar to those with Render View. You
work with the view properties and display properties objects to change views and display properties, respectively. The

thing that changes is the set of available properties.

The following script demonstrates the typical usage:

>>> from paraview.simple import *

Create a data source to probe into.
>>> Wavelet()
<paraview.servermanager.Wavelet object at 0x1156fd810>

We update the source so that when we create PlotOverLine filter

it has input data available to determine good defaults. Otherwise,
we will have to manually set up the defaults.

>>> UpdatePipeline()

Now, create the PlotOverLine filter. It will be initialized using
defaults based on the input data.

>>> PlotOverLine()

<paraview.servermanager.PlotOverLine object at 0x1156fd490>

Show the result.
>>> Show()

(continues on next page)

1.4. Displaying data

73

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

<paraview.servermanager.XYChartRepresentation object at 0x1160a6al®>

This will automatically create a new Line Chart View if the

the active view is no a Line Chart View since PlotOverLine

filter indicates it as the preferred view. You can also explicitly
create it by using CreateView() function.

Display the result.
>>> Render ()

Access display properties object.
>>> dp = GetDisplayProperties()
>>> print(dp.SeriesVisibility)
['arc_length', '®', 'RTData', '1']

This is 1list with key-value pairs where the first item is the name
of the series, then its visibility and so on.

To toggle visibility, change this list e.g.

>>> dp.SeriesVisibility = ['arc_length', "1', 'RTData', '1']

Same is true for other series parameters including series color,
line thickness etc.

For series color, the value consists of 3 values: red, green, and blue
color components.

>>> print(dp.SeriesColor)

['arc_length', '0', '0', '0', 'RTData', '0.89', '0.1', '0.11']

For series labels, value is the label to use.
>>> print(dp.SeriesLabel)
['arc_length', 'arc_length', 'RTData', 'RTData']

e.g. to change RTData's legend label, we can do something as follows:
>>> dp.SeriesLabel[3] = 'RTData -- new label’

Access view properties object.
>>> view = GetActiveView()

or

>>> view = GetViewProperties()

To change titles

>>> view.ChartTitle = "My Title"
>>> view.BottomAxisTitle = "X Axis"
>>> view.LeftAxisTitle = "Y Axis"

74 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

1.4.6 Bar Chart View

Tools Macros Help
F2® KAD>DMB melo

J ® % TG @

® [oLayout #1x [+]
AL

[m]s]B]x]

Properties |_information |
Properties &%

ot (% pelete [2

Component 0
= Display (xYBarchartRepresentation’ |
Attribute Type [Row Data -l
X Axis Parameters
Use Index For XAxis

X Array Name (bin_extents

Chart Axes

= View (XYBarChartView) H

150
Bin Value

Fig. 1.46: paraview using Bar Chart View to plot the histogram for a dataset using the Histogranm filter.

Bar Chart View is very similar to Line Chart View when it comes to creating the view, view properties, and
display properties. One difference is that, instead of rendering lines for each series, this view renders bars. In addition,
under the display properties, the Series Parameters like Line Style and Line Thickness are not available,
since they are not applicable to bars.

1.4.7 Box Chart View

LU

Fig. 1.47: paraview using Box Chart View to plot the box chart for a dataset using the Compute Quartiles filter.

Box plot is a standard method for graphically depicting groups of statistical data based on their quartiles. A box plot
is represented by a box with the following properties: the bottom of the rectangle corresponds to the first quartile, a
horizontal line inside the rectangle indicates the median and the top of the rectangle corresponds to the third quartile.
The maximum and minimum values are depicted using vertical lines that extend from the top and the bottom of the
rectangle.

In ParaView, the Box Chart View can be used to display such box plots through the Compute Quartiles filter
which computes the statistical data needed by the view to draw the box plots.

1.4. Displaying data 75

ParaView Users Guide Documentation, Release 5.12.0

1.4.8 Plot Matrix View

ParaView 4.1.0-612-g5347e18 64-bit

Fle Edit View Sources Fiters Tools Macros Help

= - =® d < b o
AR F?2® KAD>DMEB tmel
" X 2 @ G)
Pipeline Browser @R [oLayout #1x | +
8 bultin: "L oe]o]x
PRI Vehicle_data.csv e
Cyiindem 2 3 4 5 [} 7 8 9
200 +500
100 i
I I 1 00
o Okplacement [}
Properties | Information z 200 1 ..
=| : I
: [
% Delete a1l Il M |, " L H 20§
8
- 200 I . I
& a l 100
= 2| | "f 100 []
= Properties (vehicle_data.csv) 5] | i |
| [S Weight 0
) Detect Numeric Columns 100
| g oyt
) Use String Delimiter 3 I Il!u taed
] H | A B . 50
] Have Headers = |1 I 1 ““
— - Year

Field
Delimiter
Characters

Merge Consecutive Delimiters

= Display

(PlotMatrixRepresentation!

TEE

\ ¥,

e 100

717
ihlil |, ...

5
£
5 10
B I o T - L
o . o 1 50
: T » A 1111
Row Data H Il#,' e, : I “l [I
2 ! T T + - = —— 0 MPG
Series Parameters K h R 100
" . e
. " L, . 1 I e
® Vanabls g | i I hlj . h on IIIlIII"II _ﬁr 50
% Cylinders Nénm e i " Illl
® Displacement = Erinden e = i
}_ placement He weignt Year Acceleration
% HP -

Fig. 1.48: paraview using Plot
pairs of variables.

Matrix View to generate a scatter plot matrix to understand correlations between

Plot Matrix View is achart view that renders a scatter plot matrix. It allows you to spot patterns in the small scatter
plots, change focus to those plots of interest, and perform basic selection. The principle is that, for all selected arrays
or series to be plotted, the view generates a scatter plot for each pair. You can activate a particular scatter plot, in which
case the active plot is re-drawn at a bigger scale to make it easier to inspect. Additionally, the view shows a histogram
for each plotted variable or series.

The view properties allow you to set colors to use for active plot, histograms, etc., while the display properties allow
you to pick which series are plotted.

Interactions

You can click on any of the plots (except the histograms) in the matrix to make it active. Once actived, the active plot
will show that plot. You can then interact with the active plot exactly like Line Chart Viewor Bar Chart View for
panning and zoom.

View properties

View properties on this view allow you to pick styling parameters for the rendering ranging from title (Chart Title
) to axis colors (Active Plot Axis Color, Active Plot Grid Color). You can also control the visibility of
the histrogram plots, the active plot, the axes labels, the grids, and so on.

76 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Display properties

Similar to Line Chart View, you select the Attribute Type and then the arrays to plot. Since, in a scatter plot
matrix, the order in which the selected series are rendered can make it easier to understand correlations, you can change
the order by clicking and dragging the rows in the Series Parameters table.

1.4.9 Parallel Coordinates View

ParaView 4.1.0-637-g0f58246 64-bit

X J

Fle Edt View Souces fiters Tools Macros telp
PP BPPwaF?ER KAPDPME mfc | 3
] = 5) [Eepresenteion. [5) - B . BB BAE 266G
0 @ W@ O S P @ 79 showalamays berk extractslocks generate_statics link center_of rotation

Pipeline Browser @X [orayout #1x | +]

@ builtin: NEEE O

EYi vehicle_data.csv]

Al

properies | _nformation

Properties 5]
= Properties (vehicle_data.csv) |_‘ 05

% Detect Numeric Columns.

(%) Use String Delimiter

I3
(% Have Headers S
Field

Delimiter [

Characters

[] Merge Consecutive Delimiters

= Display (ParallelCoordinatesRepresentation)
(= ooy tscosrmemowiaon |||

Series Parameters

* Variable a5
% Cylinders

% Displacement
% Hp

%) weight

% vear

% Acceleration
35
* MPG

= View (ParallelCoordinatesChartview)

[Use offscreen Rendering For Screenshots ;] Crinden

Fig. 1.49: paraview using Parallel Coordinates View to plot correlations between columns in a table.

Like Plot Matrix View,Parallel Coordinates View is also used to visualize correlations between data arrays.

One of the main features of this view is the ability to select specific data in order to analyse the factors influencing
the data. e.g., with a table of three variables, one being the “output” variable the other two being the potential factor

influencing the first, selecting only the output will enable you to see if none, one, or both of the factors are actually
influencing the output.

Fig. 1.50: High “S” data point are influenced more by low “Ks” than high “Q”

1.4. Displaying data 77

ParaView Users Guide Documentation, Release 5.12.0

1.4.10 Spreadsheet View

ParaView 5.12.0-RC3

ece
4ty S @[D o F M @ I <1 4 b » Timenoocoss |97 Tmexisas . »

"R e e e : Ko @ Wi B S
2= @ o8 O
@@@@\t.@o&@@@ ﬁpﬂw@&*{}yﬁ
00 Pipaline Browser +
B builtin:) /@ o) = R0 VY W D@ B B R e A Ly 3D RenderView! Ae
* @ canex2

Properties Information
(<]5] Properties

® Delete

Search ... (use Esc to clear text)

4 Properties (can c q
e ¢ Sl SpreadSheetviewl mix]
= i) ibute: Pai] ision: 6 3 0 &
— Display (Spread o =] Showing can.ex2 Attribute: Pcint Data Precision: 6 I % ix 3 ®|F
Block Name | Point 1D AccL ACCL Magnitude DIsPL DISPL Magnitude | ids
= = 0 Blaei 1 0 2019490406 -113633 IS09616406 2523920406 124299 -0659797 -34529 372865 2
= View (Spreadsk (5] el
1 black 1 1 165030406 2665120406 1493820406 3386750406 127422 0592235 340131 368012 3
Cell FontSize — 9 2 Bloeic 1 2 7027496406 2654990406 2756980006 BO02220406 115605 -057504 -351786 374733 72
Header Font Size = 9 3 biock 1 3 5246920406 ~1696080+06 2150160406 5918620406 112059 -063814 -354913 377614 168
a black 1 4 6568720406 5792540400 1866630406 BOSESEes06 135251 -06B0263 -3.91929 421458 1
5 block 1 5 614915¢:06 6838510406 2458420006 9518470405 138039 -0607921 -385368 413836 a2
6 biack 1 6 7100460406 1065710407 2021180406 1296440407 130538 0592522 -4G1278 426116 72
[e et —— " "
® KRS-3096 kitware.com: 31.2 GiB/64.0 GiB 48.8%

Fig. 1.51: paraview using SpreadSheet View to plot raw data values for the can.ex2 dataset.

SpreadSheet View isused to inspect raw data values in a tabular form. Unlike most other views, this view is primarily
intended to be used in the paraview user interface and, hence, is not available in pvpython.

To use this view, simply create this view and show the dataset produced by any pipeline module in it by using the
Pipeline Browser . SpreadSheet View can only show one dataset at a time. Therefore, showing a new dataset
will automatically hide the previously shown dataset.

The view’s toolbar provides quick access to several of this view’s capabilities. Use the Showing widget on the view
toolbar to view as well as to change the dataset being shown. The Attribute field allows you to pick which types
of elements to show, e.g., Cell Data , Point Data, Field Data, etc. Precision can be utilized to change the

precision used when displaying floating point numbers. The E button enables you to select columns to show. Click
on the button to get a popup menu in which you check/uncheck the columns to show/hide. If showing Cell Data, the
button, when checked, enables you to see the point ids that form each of the cells.

Section 1.6.1 discusses how selections can be made in views to select elements of interest. Use the button to make the
view show only selected elements. Now, as you make selections in other views, this SpreadSheet View will update
to only show the values of the selected elements (as long as the dataset selected in are indeed being shown in the view).

Did you know?

Some filters and readers produce vtkTable, and they are automatically displayed in a spreadsheet view. Thus, one can
very easily read the contents of a .csv file with ParaView.

78 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

1.4.11 Slice View

File Edit View Sources Filters Tools Macros Help
e B owalf?&k Kab b S mebd [E
G %@ ot cor P (e BHE:sdegd: FEe
FEY - EEX ®% Qe
Plociine Browser B3] [Layout #1x [+]
B builtin: ELE L] I B EJEH CICS ENE) olelolx

@ |- cowvp
@

Properties | Information |
Properties

B Reset & Delete ?

= Properties (Waveletl)

Whale Extent [5 [6
5 [+
2 [z
Center) [) [)
= Display (CompositeMultiSliceRepresentation)
Color
@ Solid Color P

. show aEdit || 2% Rescale

Opacity 9 [1

Representation [Slices

Cube Axes

Show Axis Edit

Fig. 1.52: Slice View can be used to show orthogonal slices from datasets.

Slice View is special type of Render View that can be used to view orthogonal slices from any dataset. Any dataset
shown in the view will be sliced in axis-aligned slices based on the locations specified on the view. The slice locations
along the three orthogonal axis planes can be specified by using the frame decoration around the view window.

Interactions
Since this view is a type of Render View, the camera interactions are same as that of Render View . Additionally,
you can interact with the frame decoration to manipulate slice locations along the three axis planes.

* Double-click the left mouse button in the region between the axis border and the view to add a new slice.

* You can click-and-drag a marker to move the slice location.

* To remove a slice, double-click with the left mouse button on the marker corresponding to that slice.

* To toggle visibility of the slice, you can right-click on the marker.

Slice View in pvpython

To create a slice view in use:
>>> view = CreateView("MultiSlice")

Use properties on view to set/get the slice offsets.
>>> view.XSliceValues = [-10, 0, 10]

>>> print(view.XSliceValues)

[-10, O, 10]

Similar to XSliceValues, you have YSliceValues and ZSliceValues.
(continues on next page)

1.4. Displaying data 79

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

>>> view.YSliceValues = [0]
>>> view.ZSliceValues []

1.4.12 Python View

Some Python libraries, such as matplotlib, are widely used for making publication-quality plots of data. The Python
View provides a way to display plots made in a Python script right within paraview.

The Python View has a single property, a Python script that generates the image to be displayed in the viewport.
All the Python bindings for ParaView and VTK that are available in the Python scripting module are available from
within this script, making it possible to plot any array from just about any dataset that can be loaded into ParaView.
The Python script for the view is evaluated in a unique Python environment so that global variables defined in the script
do not clobber global variables in other Python scripts (either in other instances of the Python View or in the Python
interpreter). This environment is reset each time the script is evaluated, so data cannot be saved between evaluations.

The Python View requires that the Python script where the plotting occurs define two functions. In the first function,
you request which arrays you would like to transfer to the client for rendering. At present, all rendering in this view
takes place on the client, even in client-server mode. These arrays can be point data, cell data, field data, and table row
data. This function runs only on data-server processes. It provides access to the underlying data object on the server
so that you can query any aspect of the data using the Python-wrapped parts of VTK and ParaView.

The second function is where you put Python plotting or rendering commands. This function runs only on the ParaView
client. It has access to the complete data object gathered from the data server nodes, but only has access to the arrays
requested in the first function. This function will typically set up objects from a plotting library, convert data from VTK
to a form that can be passed to the plotting library, plot the data, and convert the plot to an image (a vtkImageData
object) that can be displayed in the viewport.

Selecting data arrays to plot

All the rendering in the Python View occurs in the client, so the client must get the data from the server. Because
the dataset residing on the ParaView server may be large, transferring all the data to the client may not be possible
or practical. For that reason, we have provided a mechanism to select which data arrays in a data object on the server
to transfer to the client. The overall structure of the data object, however, (including cell connectivity, point positions,
and hierarchical block structure) is always transferred to the client. By default, no data arrays are selected for transfer
from the server.

The Python script for the view must define a function called setup_data(view) . The view argument is the VTK
object for the Python View . The current datasets loaded into ParaView may be accessed through the view object.

Here’s an example of this function that was used to generate the image in Fig. 1.53:

def setup_data(view):
Iterate over visible data objects
for i in range(view.GetNumberOfVisibleDataObjects()):
You need to use GetVisibleDataObjectForSetup (i)
in setup_data to access the data object.
dataObject = view.GetVisibleDataObjectForSetup(i)

The data object has the same data type and structure

as the data object that sits on the server. You can

query the size of the data, for instance, or do anything
else you can do through the Python wrapping.

print('Memory size: kilobytes'.format(dataObject.GetActualMemorySize()))
(continues on next page)

80 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

o ParaView 4.1.0-RC2-40-g50d18a1 64-bit

file Edit View Sources Filters Tools Macros Help
pEEBEROLDAF 2K KAP PSS mi [B

B & [@socior [) [ouine DR sdkkidai Beea
VBB OEEL®

Pipeline Browser B [Layout1x | + |
B builtin: L 30 B A Y 8 B Lm[Elolx] @ (mE]=a]x]

CI]

< & ResampleWithDataset1

=+ PointSourcel

‘ @ ResampleWithDatasetl

=) ResamplewithDataset1
@ MaskPoints1

Momentum magnitude vs. density

CAC IR

&

& Threshold2
@ @alyph2

N

Momentum magnitude
w

Properties | Information

Properties

D0 05 10 15 2.0 25 30 35 40 45

,Densntz
Density histogram

[= Properties (bluntfin.vts) ﬂ
f

[x)Cell/Point Array Status
% 2% Density

% 2% Momentum

®| 5%, StagnationEnergy

[= Display (StructuredGridRepresent

Representation outiine |~

Coloring

| @ Solid Color =1 IE]@

0 05 10 15 20 25 30 35 40

I 4

Fig. 1.53: paraview using Python View with matplotlib to display a scatterplot of momentum magnitude versus
density (upper right) and a histogram of density (lower right) in the bluntfin.vts dataset.

(continued from previous page)

Clean up from previous calls here. We want to unset
any of the arrays requested in previous calls to this function.
view.DisableAllAttributeArrays()

By default, no arrays will be passed to the client.

You need to explicitly request the arrays you want.

Here, we'll request the Density point data array
view.SetAttributeArrayStatus(i, vtkDataObject.POINT, "Density", 1)
view.SetAttributeArrayStatus(i, vtkDataObject.POINT, "Momentum", 1)

Other attribute arrays can be set similarly
view.SetAttributeArrayStatus(i, vtkDataObject.FIELD, "fieldData", 1)

The vtkPythonView class passed in as the view argument to setup_data(view) defines several methods useful for
specifying which data arrays to copy:

* GetNumberOfVisibleDataObjects() - This returns the number of visible data objects in the view. If an
object is not visible, it should not show up in the rendering, so all the methods provided by the view deal only
with visible objects.

e GetVisibleDataObjectForSetup(visibleObjectIndex) - This returns the visibleObjectIndex'th
visible data object in the view. (The data object will have an open eye next to it in the Pipeline Browser
)

¢ GetNumberOfAttributeArrays(visibleObjectIndex, attributeType) - This returns the number of
attribute arrays for the visibleObjectIndex'th visible object and the given attributeType (e.g.,

1.4. Displaying data 81

ParaView Users Guide Documentation, Release 5.12.0

vtkDataObject.POINT, vtkDataObject.CELL, etc.).

e GetAttributeArrayName(visibleObjectIndex, attributeType, arrayIndex) - This returns the
name of the array of the given attribute type at the given array index for the visibleObjectIndex'th ob-
ject.

e SetAttributeArrayStatus(visibleObjectIndex, vtkDataObject.POINT, "Density", 1) - This
sets the array status of an attribute array. The first argument is the visible object index, the second object is
the attribute association of the array, the third argument is the name of the array, and the last argument specifies
if the array is to be copied (1) or not (0).

e GetAttributeArrayStatus(visibleObjectIndex, vtkDataObject.POINT, "Density") - This re-
trieves the array status for the object with the given visible index with a given attribute association (second
argument) and a name (last argument).

e EnableAllAttributeArrays() - This sets all arrays to be copied.
* DisableAllAttributeArrays() - This sets all arrays to not be copied.

The methods GetNumberOfVisibleDataObjects() s GetVisibleDataObjectForSetup(...) s
GetNumberOfAttributeArrays(...) , and GetAttributeArrayName(...) are all convenient methods for
obtaining information about visible data objects in the view that could otherwise be accessed with existing view and
representation methods. The last four methods are valid only from within the setup_data(view) function.

Plotting data in Python

After the setup_data(view) function has been called, ParaView will transfer the data object and selected arrays
to the client. When that is done, it will call the render (view, width, height) function you have defined in your
script.

The view argument to the render(view, width, height) function is the vtkPythonView object on the client.
The width and height arguments are the width and height of the viewport, respectively. The render(view,
width, height) function uses the data available through the view, along with the width and height, to generate a
vtkImageData object that will be displayed in the viewport. This vtkImageData object must be returned from the
render(view, width, height) function. If no vtkImageData is returned, the viewport will be black. If the size
of the image does not match the size of the viewport, the image will be stretched to fit the viewport.

Putting it all together, here is a simple example that generates a solid red image to display in the viewport.

def render(view, width, height):
from paraview.vtk import vtkImageData
image = vtkImageData()
image.SetDimensions(width, height, 1)
from paraview.numeric import VTK_UNSIGNED_CHAR
image.AllocateScalars(VIK_UNSIGNED_CHAR, 4)
pixel_array = image.GetPointData() .GetArray(0)
pixel_array.FillComponent(®, 255.0)
pixel_array.FillComponent(l, 0.0)
pixel_array.FillComponent(2, 0.0)
pixel_array.FillComponent (3, 0.0)

return image

This example does not produce an interesting visualization, but serves as a minimal example of how the render (view,
width, height) function should be implemented. Typically, we expect that the Python plotting library you use has
some utilities to expose the generated plot image pixel data. You need to copy that pixel data to the vtkImageData
object returned by the render (view, width, height) function. Exactly how you do this is up to you, but ParaView
comes with some utilities to make this task easier for matplotlib.

82 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Set up a matplotlib Figure

The Python View comes with a Python module, called python_view , that has some utility functions you can use.
To import it, use:

[from paraview import python_view J

This module has a function, called matplotlib_figure(view, width, height) , that returns a matplotlib.
figure.Figure given width and height arguments. This figure can be used with matplotlib plotting commands to
plot data as in the following:

def render(view, width, height):
figure = python_view.matplotlib_figure(width, height)

ax = figure.add_subplot(1l,1,1)
ax.minorticks_on()
ax.set_title('Plot title')
ax.set_xlabel ('X label')
ax.set_ylabel ('Y label')

Process only the first visible object in the pipeline browser
dataObject = view.GetVisibleDataObjectForRendering(0)

x = dataObject.GetPointData() .GetArray('X")
Convert VIK data array to numpy array for plotting
from paraview.numpy_support import vtk_to_numpy

np_x = vtk_to_numpy(x)

ax.hist(np_x, bins=10)

return python_view.figure_to_image(figure)

This definition of the render(view, width, height) function creates a histogram of a point data array named
X from the first visible object in the Pipeline Browser . Note the conversion function, python_view.
figure_to_image(figure) , in the last line. This converts the matplotlib Figure object created with
python_view.matplotlib_figure(width, height) intoa vtkImageData object suitable for display in the view-
port.

1.4. Displaying data 83

ParaView Users Guide Documentation, Release 5.12.0

1.4.13 Comparative Views

Comparative Views, including Render View (Comparative) ,Line Chart View (Comparative) , and Bar
Chart View (Comparative) , are used for generating comparative visualization from parameter studies. These
views are covered in Section 2.4 of the Reference Manual.

1.4.14 Virtual reality

ParaView supports immersive data visualization in virtual reality (VR) with head-mounted displays (HMDs). VR can
be used to view the scene in the active Render View and interact with it. This environment provides enhanced perception
of depth and more intuitive manipulation of 3D objects by creating the sensation of the user being physically present
inside of the scene.

XRinterface plugin

VR support in ParaView is provided through the XRInterface plugin (previously called OpenVR plugin). To load
this plugin, open the Plugin Manager via Tools > Manage Plugins.... Click on XRInterface, then on the button
Load Selected. This will open the XRInterface panel.

How to install/build

By default, the XRInterface plugin is already enabled in ParaView Windows binaries. Simply launch ParaView
with a VR runtime such as SteamVR on your machine to easily experience VR with ParaView.

Otherwise, the plugin needs to be enabled before building ParaView, see README.md in the plugin sources for more
information.

XRlInterface panel

By default, the XRInterface panel appears on the right upon loading the plugin. To open it manually, search for the
corresponding checkbox in the main menu via View > XRInterface.

Once the XRInterface plugin is loaded and an HMD connected, click on the button Send to XR to start rendering
in VR. Other options are available in the plugin panel:

e Use MultiSamples — This checkbox indicates whether multisampled framebuffers are used. Using multisam-
ples can reduce flickering but currently does not work with volume rendering.

e Base Station Visibility — This checkbox indicates whether the base stations models are displayed in VR
(for devices using base stations).

* Desired XR Runtime — This drop down list indicates whether to use OpenVR or OpenXR when both are
available.

* Send to XR - This button launches the VR mode using the selected runtime.

e Attach to Current View — This button allows VR-only elements to appear in the current Render View,
such as cropping planes or avatars. This option is mainly useful in Collaboration mode for desktop users when
an HMD is not available.

e Show XR View - This button opens a window showing a stabilized view of what the VR headset is showing,
which is useful to produce screenshots or videos.

84 Chapter 1. ParaView User’s Guide

https://www.paraview.org/download/
https://www.steamvr.com/
https://gitlab.kitware.com/paraview/paraview/-/blob/master/Plugins/XRInterface/README.md

ParaView Users Guide Documentation, Release 5.12.0

XRInterface (%]
se MultiSamples
Base Station Visibility
Desired ¥R Runtime OpenvR =
Send to XR

Attach to Current View

Export Locations as a View

Export Locations as Skyboxes

Fig. 1.54: XRInterface panel.

e Export Locations as a View — This button exports saved locations as .vtp files in a folder called
pv-view. This option is meant to be used for Mineview.

e Export Locations as Skyboxes — This button exports saved locations as skyboxes in a folder called
pv-skybox. This generates six .jpg images (right, left, up, down, back and front) producing a skybox that
can then be used outside of VR as well.

Interactions

On top of head tracking to reproduce the user physical movements for navigation, the controllers can be used to interact
with the data through actions such as scaling, picking, etc.

The controls mapping for different controllers is detailed in Section 1.4.14.

Action Controls

Movement (Left/Right) Joystick
Open XR Menu Right Menu Button
Confirm (XR Menu) Right Trigger

Trigger Action Right Trigger

Move to Next Saved Location Left Trigger

Grip Action Left Grip + Right Grip

1.4. Displaying data 85

https://gitlab.kitware.com/ken-martin/mineview/

ParaView Users Guide Documentation, Release 5.12.0

Trigger actions

Trigger actions are assigned to the right trigger by default and include grabbing, picking, probing, interactive clipping,
teleportation, and adding points to sources (such as a polyline source). The current action can be chosen via the XR
menu (see Section 1.4.14).

¢ Adding points to a source — Press the right trigger to place a point at the tip of the right controller. Only valid
when the active source allows placing points, such as a polyline source.

Fig. 1.55: Adding a point to a polyline source in VR.

* Grabbing — Press the right trigger when the right controller is in the bounding box of an object to grab it and
move it.

* Picking — Press the right trigger while pointing at an object to pick it and move it from a distance.

* Interactive Cropping — Press the right trigger to crop the scene in real time with a plane placed at the tip of
the right controller.

* Probing — Press the right trigger while pointing at a dataset cell to select it and display information on its
position and data values.

¢ Teleportation — Press the right trigger while pointing at a dataset with the ray to instantly move at the pointed
location.

86 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Fig. 1.56: Grab action in VR.

Fig. 1.57: Picking action in VR.

1.4. Displaying data 87

ParaView Users Guide Documentation, Release 5.12.0

Fig. 1.58: Real time cropping in VR.

Fig. 1.59: Cell probing action in VR.

88 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Grip actions

Grip actions are used to transform the scene through translation, scaling and rotation.

* Translation — Press both grip buttons, then move the controllers together to translate the scene.

Fig. 1.60: Translation action in VR. Green and red arrows correspond to movements of the controllers and dataset,
respectively.

* Scaling/zoom — Press both grip buttons, then move the controllers farther or closer to each other to zoom in or
out of the scene.

* Rotation — Press both grip buttons, then move one controller around the other to rotate the scene around a
vertical axis.

XR menu

In the XR View, pressing the menu button opens a dedicated menu floating in the 3D scene in front of the user.

This menu is composed of the following elements:

1. Pipeline Browser — This is the same Pipeline Browser present in ParaView. The visibility for each item
in the pipeline can be modified by pointing the navigation ray on the eye icon and pressing the right trigger.

2. Panels — VR options are distributed into 4 panels, that can be displayed by clicking on the corresponding tab:

e Interaction— This panel contains options related to the interactions with the scene using the controllers
(see Section 1.4.14).

* Movement — This panel contains options related to the camera movement and poses (see Section 1.4.14).

1.4. Displaying data 89

ParaView Users Guide Documentation, Release 5.12.0

Fig. 1.61: Scaling action in VR. Green and red arrows correspond to movements of the controllers and dataset, respec-
tively.

Fig. 1.62: Rotation action in VR. Green and red arrows correspond to movements of the controllers and dataset, re-
spectively.

90 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

@ @ builtin: @

s © Interaction Movement Environment Widgets

View Up Direction
ﬁ-x +xﬁ- vg 'gw E-z 23
Scene Scale

0.001 0.01| 0.1 1 ‘10 100 1000

@ Show Floor

) Exit XR Kdd4dDP>PPME
3 4

Fig. 1.63: XR integrated menu.

1.4. Displaying data 91

ParaView Users Guide Documentation, Release 5.12.0

* Environment — This panel contains global options related to the scene (see Section 1.4.14).
* Widgets — This panel contains options related to VR-specific widgets (see Section 1.4.14).
3. Exit XR — This button closes the current XR View.

4. Animation Buttons — These buttons are used to navigate timesteps for temporal datasets.

Interaction panel

& builtin:
: B Interaction Movement Environment Widgets
Right Trigger
Pick v
Reset Actor Positions
Interactive Ray
M Exit XR

Fig. 1.64: Interaction panel of the XR integrated menu.

e Right Trigger — This drop down list indicates which action is mapped to the right trigger outside of the menu,
such as picking, probing, etc. See Section 1.4.14 for the list of available actions.

* Reset Actors Positions — This button resets the position of all objects within the scene.

e Interactive Ray — This checkbox indicates whether the ray changes color when pointing at an object to
signal a collision.

92 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Movement Panel

8 builtin:
: B Interaction Movement Environment Widgets
Movement Style
Flying v
Movement speed: x1.00
. Reset Camera
% 2!
Clear Save pose
Bring Collaborators Here
N Exit XR

Fig. 1.65: Movement panel of the XR integrated menu.

* Movement Style — This drop down list indicates which movement style is mapped to the controller joysticks.
— Flying mode uses only one joystick and movement follows the orientation of the controller itself.

— Grounded mode uses the left joystick to move horizontally in all directions, while the right joystick controls
elevation.

* Movement Speed — This horizontal slider modifies the movement speed when using the joysticks. A higher
multiplier corresponds to a higher speed.

* Reset Camera — This button scales and places the objects at the center of the physical room.
* Camera pose buttons:
— Clear — This button clears all previously saved camera poses.

— Save pose — This button saves the current pose in the list of saved camera poses. Up to 6 poses can be
saved this way. For each saved pose, a dedicated button is added to the right of this button.

e Bring Collaborators Here — This button moves all collaborators to your current location. Only applicable
in Collaboration mode.

1.4. Displaying data 93

ParaView Users Guide Documentation, Release 5.12.0

Environment panel

E builtin:
: © Interaction Movement Environment Widgets
View Up Direction

X +x4 ey | | -7 +748

Scene Scale
0.001 001 0.1 1 10 100 | 1000

% Show Floor

" Exit XR

Fig. 1.66: Environment panel of the XR integrated menu.

e View Up Direction — These buttons set which axis points upwards from the top of the HMD. This is useful
when datasets or skyboxes are oriented differently from the default.

e Scene Scale — These buttons change the scaling factor of the scene. A higher value results in all objects
appearing larger.

* Show Floor — This button allows hiding or showing the floor as a white plane.

Widgets panel

* Distance Widget — This button adds a measuring tool to the scene. Press the right trigger once to place the
starting point where the right controller is located, then press a second time with the controller at the desired
location to place the second point. Four values are displayed next to the tool: distance and X, Y, Z difference
between both points. The tips of the line can be grabbed and moved individually after placing them.

e Navigation Panel — This button allows to display a tooltip above the left controller with information on its
spatial position in world coordinates.

* Cropping buttons — The following buttons provide tools to crop data in real time. Cropping planes can be
moved by placing the right controller on them and grabbing them with the right trigger. More than one plane can
be added to the scene.

— Add Crop Plane — This button adds a cropping plane to the scene.

94 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

3 builtin:
s © Interaction Movement Environment Widgets

#"Ruler © Navigation Panel
[Add Crop Plane ¥ Add Thick Crop

Hide Crop Planes (@ Remove Crop Planes

Crop Thickness: Auto
J=Snap Crop Planes
" Exit XR MAdadP>PPME

Fig. 1.67: Widgets panel of the XR integrated menu.

_Dist: 8.10118
deltaX:0.292 959
deltaY: 8.09519
deltaZ: 0.105532

Fig. 1.68: Distance measurement widget in VR.

1.4. Displaying data 95

ParaView Users Guide Documentation, Release 5.12.0

v g
J.65

Nortp

40 65 ¢ -1
=40.6 East of

Fig. 1.69: Navigation panel widget in VR.

— Add Thick Crop — This button adds a thick cropping plane to the scene.
— Hide Crop Planes — This button hides all cropping planes in the scene.
— Remove All Crop Planes — This button removes all cropping planes from the scene.

— Crop Thickness — This horizontal slider sets the thickness of created thick cropping planes (this param-
eter does not affect current ones). By default, the value is set to auto, which adjusts the plane thickness
according to the current scene scale.

— Snap Crop Planes — This button allows to choose whether the cropping planes should snap to the co-
ordinates axes.

Remoting

Notice

Remoting support is currently experimental.

Remoting allows streaming the active render view of ParaView to a remote device.

96 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Prerequisites

The remoting feature is only available on Windows for the Hololens 2 and requires an additional package named
Microsoft.Holographic.Remoting.OpenXr. With this, ParaView can connect to another application in the remote device
if both applications use the same version of this package.

Note that the ParaView release uses the same version as the official player application developed by Microsoft, available
in the Microsoft Store, which is version 2.9.2.

If you do have not an application already deployed in the remote device, we recommend downloading the Holographic
Remoting Player application in the Microsoft Store.

How to launch

First, start the application on the remote device.

After launching this application, it will wait for another application to connect to it via an IP address.

Holographic Remoting Player v2.9.2.0
This app is a companion for Holographic Remoting apps.
Connect from a compatible app or scan QR Code to begin,

Waiting for connection on

Get help at: hitps://aka.ms/ Iog-aphmemolmghplp

Fig. 1.70: Remote application awaiting connection in the Hololens 2.
You can now start ParaView and do any process on your data that you want. When you are ready to test it in the Hololens
2, enable the XR Interface plugin. You will need to set different options:

* Desired XR Runtime — set it to OpenXR because the Microsoft.Holographic.Remoting.OpenXr depends on
it.

e Use OpenXR Remoting — enable or disable the remoting support.
* Remote address — set the IP address to connect ParaView and the application in the Hololens 2.

After setting these options, you can click on Send To XR. Once the connection is established, you will be able to see
and interact with your dataset.

For now, only grabbing feature is available as interaction.

1.4. Displaying data 97

https://www.nuget.org/packages/Microsoft.Holographic.Remoting.OpenXr
https://apps.microsoft.com/store/detail/holographic-remoting-player/9NBLGGH4SV40

ParaView Users Guide Documentation, Release 5.12.0

¥RInterface %]
LIze MultiSamples
Base Station Visibility
Desired ¥R Runtime | OpenkR
v | Use OpenXR. Remoting (experimental)
Remote address |127.0.0.1

Send to ¥R

Fig. 1.71: XRlInterface panel with OpenXR Remoting options.

Fig. 1.72: can.ex2 in the Hololens 2.

98 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Controls mapping

This section details the button mappings used in ParaView for different types of controllers. The controls names are

those used throughout the VR section.

Controller Button

Joystick
Trigger

Grip Button
Menu Button

HP Motion
XR View Controls
Joystick
Trigger
Grip
Menu Button
HTC Vive

XR View Controls

Controller Button

Joystick
Trigger

Grip

Menu Button

Trackpad
Trigger

Grip Button
Menu Button

Oculus Touch

XR View Controls

Controller Button

Joystick
Trigger

Grip

Menu Button

Joystick
Trigger

Grip Button
Menu Button

Valve Index

XR View Controls

Controller Button

Joystick
Trigger

Grip

Menu Button

Joystick
Trigger
A Button
B Button

1.4. Displaying data

99

ParaView Users Guide Documentation, Release 5.12.0

Microsoft Hand

XR View Controls Controller Gesture

Trigger Hand squeeze
Grip Hand grip

1.5 Filtering Data

Visualization can be characterized as a process of transforming raw data produced from experiments or simulations
until it takes a form in which it can be interpreted and analysed. The visualization pipeline introduced in Section 1.1.2
formalizes this concept as a data flow paradigm where a pipeline is set up of sources, filters, and sinks (collectively
called pipeline modules or algorithms). Data flows through this pipeline, being transformed at each node until it is in a
form where it can be consumed by the sinks. In previous chapters, we saw how to ingest data into ParaView (Section
1.2) and how to display it in views (Section 1.4). If the data ingested into ParaView already has all the relevant attribute
data, and it is in the form that can be directly represented in one the existing views, then that is all you would need.
The true power of the visualization process, however, comes from leveraging the various visualization techniques such
as slicing, contouring, clipping, etc., which are available as filters. In this chapter, we look at constructing pipelines to
transform data using such filters.

1.5.1 Understanding filters

In ParaView, filters are pipeline modules or algorithms that have inputs and outputs. They take in data on their inputs
and produce transformed data or results on their outputs. A filter can have multiple input and output ports. The number
of input and output ports on a filter is fixed. Each input port accepts input data for a specific purpose or role within the
filter. (E.g., the Resample With Dataset filter has two input ports. The one called Input is the input port through
which the dataset providing the attributes to interpolate is ingested. The other, called Source , is the input port through
which the dataset used as the mesh on which to re-sample is accepted.)

[Fao > [Faro >

Filter

Port 1 | Port1)

Fig. 1.73: A filter is a pipeline module with inputs and outputs. Data enters a filter through the inputs. The filter
transforms the data and produces the resulting data on its outputs. A filter can have one or more input and output ports.
Each input port can optionally accept multiple input connections.

An input port itself can optionally accept multiple input connections, e.g., the Append Datasets filter, which appends
multiple datasets to create a single dataset only has one input port (named Input). However, that port can accept
multiple connections for each of the datasets to be appended . Filters define whether a particular input port can accept
one or many input connections.

Similar to readers, the properties on the filter allow you to control the filtering algorithm. The properties available
depend on the filter itself.

100 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

1.5.2 Creating filters in paraview

All available filters in paraview are listed under the Filters menu. These are organized in various categories. To create
a filter to transform the data produced by a source or a reader, you select the source in the Pipeline Browser to make
it active, and then click on the corresponding menu item in the Filters menu. If a menu item is disabled, it implies that
the active source does not produce data that can be transformed by this filter.

Did you know?

If a menu item in the Filters menu is disabled, it implies that the active source(s) is not producing data
of the expected type or the characteristics needed by the filter. On Windows and Linux machines, if you
hover over the disabled menu item, the status bar will show the reason why the filter is not available.

(@)% = selem on) B
= CTH »
@ @ @ @ Common v thowallarrays berk extractBlocks
Pipeline Browser CosmoTools ' B

B builtin: Data Analysis [calculator
B Material Analysis |& compute Quartiles

@ - Sphered Quadrature Points »
Statistics L=
L ¥

Extract Selection
Temporal »

: - R | Histogram
Properties | Information || Alphabetical '

Integrate Variables
Properties g
Plot Data

Apply et || 3 Delete | ?

search luse Esc to clear text)

al

* Plot Global Variables Over Time

Plot On Intersection Curves

= Properties (Wavelet0) % Plat Overling

Whole Extent [-10 I 10 Plot Selection Over Time

Probe Location

J

[-10 [10 |
[10 [10 |

Center [0 I 0 I 0

Programmable Filter

= Display (UnifoermGridRepresentat l
Representation [gutline lvé
L i

Coloring

o RTData - lvii}
e 1 = 1 g

Requires a row attribute array with 1 component(s)

Multiple input connections

When you create a filter, the active source is connected to the first input port of the filter. Filters like Append Datasets
can take multiple input connections on that input port. In such a case, to pass multiple pipeline modules as connections
on a single input port of a filter, select all the relevant pipeline modules in the Pipeline Browser . You can select
multiple items by using the CTRL (or) and key modifiers. When multiple pipeline modules are selected, only the filters
that accept multiple connections on their input ports will be enabled in the Filters menu.

1.5. Filtering Data 101

ParaView Users Guide Documentation, Release 5.12.0

Pipeline Browser &%

E builtin:
-+ Sphere0

>
@ ¥ AppendDatasets0
» @ Coned

a ¥ AppendDatasets0
&

- AppendDatasets0

Fig. 1.74: The Pipeline Browser showing a pipeline with multiple input connections. The Append Datasets filter
has two input connections on its only input port, Sphere® and Cone® .

Multiple input ports

Most filters have just one input port. Hence, as soon as you click on the filter name in the Filters menu, it will create
a new filter instance and that will show up in the Pipeline Browser . Certain filters, such as Resample With
Dataset , have multiple inputs that must be set up before the filter can be created. In such a case, when you click
on the filter name, the Change Input Dialog will pop up, as seen in Fig. 1.75. This dialog allows you to select the
pipeline modules to be connected to each of the input ports. The active source(s) is connected by default to the first
input port. You are free to change those as well.

Changing input connections

paraview allows you to change the inputs to a filter after the filter has been created. To change inputs to a filter, right-
click on the filter in the Pipeline Browser to get the context menu, and then select Change Input. .. . This will
pop up the same Change Input Dialog as when creating a filter with multiple input ports. You can use this dialog
to set new inputs for this filter.

Did you know?

While the Filters menu is a handy way to create new filters, with the long list of filters available in ParaView, manually
finding a particular filter in this menu can be very challenging. To make it easier, ParaView incorporates a quick launch
mechanism. When you want to create a new filter (or a source), simply type CTRL + Space or Alt + Space. This will
pop up the quick-launch dialog. Now, start typing the name of the filter you want. As you type, the dialog will update
to show the filters and sources that match the typed text. You can use the arrow keys to navigate and use the Enter key
to create the selected filter (or source). Press while pressing Enter to quickly apply the filter on creation, equivalent
to creating the filter and then clicking the Apply button. Note that filters may be disabled, as was the case in the Filters
menu but by default the selected item will be the first enabled filter. You can use Esc to clear the text you have typed
so far. Hit the Esc a second time, and the dialog will close without creating any new filter.

102 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

O Layout #1X | + |
L 30 B9 & N B¢ R R OB R

Change Input Dialog

Available Input Ports | Select Input

® Input - @ Sphere0
() Source ¥ AppendDatasets0

éAppendDatasetsU

) AppendDatasets0

Fig. 1.75: The Change Input Dialog is shown to allow you to pick inputs for each of the input ports for a filter with
multiple input ports. To use this dialog, first select the Input Port you want to edit on the left side, and select the
pipeline module(s) that are to be connected to this input port. Repeat the step for the other input port(s). If an input
port can accept multiple input connections, you can select multiple modules, just like in the Pipeline Browser .

1.5. Filtering Data 103

ParaView Users Guide Documentation, Release 5.12.0

B builtin:
@ = Sphere0
@ ¥ AppendDatasets0

Create Custom Filter...

Properties

Information Change Input...

Properties | [] Ignore Time

| & Apply || @ Reset ”; -

Delete

T T
['E.earch .. luse Esc to clear text) ”Ll

Fig. 1.76: The context menu in the Pipeline Browser showing the option to change inputs for a filter.

(extra)

¥ Extract Subset

Extract CTH Parts
Extract Cells By Region
Extract Edges

[1 Extract Selection
(J Extract Subset

Cactennt Cok

Type to search. Enter to select. Esc to cancel.

104 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

1.5.3 Creating filters in pvpython

To create a filter in pvpython, you simply create the object by using its name as a constructor function.

>>> from paraview.simple import *

>>> filter = Shrink(Q)

Similar to paraview, the filter will use the active source(s) as the input. Additionally, you can explicitly specify the
input in the function arguments.

>>> reader = OpenDataFile(...)

>>> shrink

Shift (Input=reader)

Multiple input connections

To setup multiple input connections, you can specify the connections as follows:

>>> sphere = Sphere()
>>> cone = Cone()

Simply pass the sources as a list to the constructor function.

>>> appendDatasets = AppendDatasets(Input=[sphere, cone])

>>> print (appendDatasets.Input)

[<paraview.servermanager.Sphere object at 0x6d75f90>, <paraview.servermanager.Cone..
—object at 0x6d75c50>]

Multiple input ports

Setting up connections to multiple input ports is similar to the multiple input connections, except that you need to
ensure that you name the input ports properly.

>>> sphere = Sphere()
>>> wavelet = Wavelet()

>>> resampleWithDataSet = ResampleWithDataset(Input=sphere, Source=wavelet)

Changing input connections

Changing inputs in Python is as simple as setting any other property on the filter.

For filter with single input connection
>>> shrink.Input = cone

for filters with multiple input connects
>>> appendDatasets.Input = [reader, cone]

to add a new input.
>>> appendDatasets.Input.append(sphere)

(continues on next page)

1.5. Filtering Data 105

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)
to change multiple ports
>>> resampleWithDataSet.Input = wavelet2
>>> resampleWithDataSet.Source = cone

1.5.4 Changing filter properties in paraview

Filters provide properties that you can change to control the processing algorithm employed by the filter. Changing and
viewing properties on filters is the same as with any other pipeline module, including readers and sources. You can
view and change these properties, when available, using the Properties panel. Section 2.1 covers how to effectively
use the Properties panel. Since this panel only shows the properties present on the active source , you must ensure
that the filter you are interested in is active. To make the filter active, use the Pipeline Browser to click on the filter
and select it.

1.5.5 Changing filter properties in pvpython

With pvpython, the available properties are accessible as properties on the filter object, and you can get or set their
values by name (similar to changing the input connections (Section 1.5.3)).

You can save the object reference when it's created.
>>> shrink = Shrink()

Or you can get access to the active source.
>>> Shrink() # <-- this will make the Shrink the active source.
>>> shrink = GetActiveSource()

To figure out available properties, you can always use help.
>>> help(shrink)
Help on Shrink in module paraview.servermanager object:

class Shrink(SourceProxy)

| Shrink(**args)

|

| The Shrink filter causes the individual cells of a dataset to break apart from
each other by moving each cell's points toward the centroid of the cell. (The
centroid of a cell is the average position of its points.) This filter operates
on any type of dataset and produces unstructured grid output.

|

| Method resolution order:
| Shrink

| SourceProxy

| Proxy

| builtins.object
|

| Methods defined here:
|

|

|

Initialize = aInitialize(self, connection=None, update=True)

| Data descriptors defined here:

(continues on next page)

106 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

Input
This property specifies the input to the Shrink filter.

ShrinkFactor
The value of this property determines how far the points will move. A value
of 0 positions the points at the centroid of the cell; a value of 1 leaves
them at their original positions.

To get the current value of a property:
>>> sf = shrink.ShrinkFactor

>>> print sf

0.5

To set the value
>>> shrink.ShrinkFactor = 0.75

In the rest of this chapter, we will discuss some of the commonly used filters in detail. They are grouped under categories
based on the type of operation that they perform.

1.5.6 Filters for sub-setting data

These filters are used for extracting subsets from an input dataset. How this subset is defined and how it is extracted
depends on the type of the filter.

Clip

Clipis used to clip any dataset using either an implicit function (such as a plane, sphere, or a box) or using values of a
scalar data array in the input dataset. A scalar array is a point or cell attribute array with a single component. Clipping
involves iterating over all cells in the input dataset and then removing those cells that are considered outside of the space
defined by the implicit function or that have an attribute values less than the selected value. For cells that straddle the
clipping surface, these are clipped to pass through the part of the cell that is truly inside the specified implicit function
(or greater than the scalar value).

This filter converts any dataset into an unstructured grid (Section 1.3.1) or a multiblock of unstructured grids (Section
1.3.1) in the case of composite datasets.

Clip in paraview

To create the Clip filter, access it through the Filters > Common or the Filters > Alphabetical menus. This filter is
also accessible from the Common filters toolbar by clicking the button to create this filter.

On the Properties panel, you will see the available properties for this filter. One of the first things that you should
selectis the Clip Type. Clip Type is used to specify the type of implicit function to use for the clipping operations.
The available options include Plane , Box , Sphere , and Scalar . Selecting any one of these options will update the
panel to show properties that are used to define the implicit function, e.g., the Origin and the Normal for the Plane
or the Center and the Radius for the Sphere . If you select Scalar , the panel will let you pick the data array and the
value with which to clip. Remember, cells with the data value greater than or equal to the selected value are considered
in and are passed through the filter.

Did you know?

1.5. Filtering Data 107

ParaView Users Guide Documentation, Release 5.12.0

Fig. 1.77: Comparison between results produced by the Clip filter with Crinkle Clip unchecked (left) and checked
(right) when clipping with an implicit plane. The image on the left also shows the 3D widget used to interactivly place
the implicit plane for the clipping operation.

BEORPEPRMOUDHEL ®

Fig. 1.78: The Common filters toolbar in paraview for quick access to the commonly used filters.

108 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

When clipping with implicit functions, ParaView renders widgets in the active view that you can use to interactively
control the implicit function, called 3D widgets . As you interact with the 3D widget, the panel will update to reflect
the current values. The 3D widget is considered an aid and not as a part of the actual visualization scene. Thus, if you
change the active source and the Properties panel navigates away from this filter, the 3D widget will automatically
be hidden.

The Inside Out option can be used to invert the behavior of this filter. Basically, it flips the notion of what is consid-
ered inside and outside of the given clipping space.

Check Crinkle Clip if you don’t want this filter to truly clip cells on the boundary, but want to preserve the input cell
structure and to pass the entire cell on through the boundary (Fig. 1.77). This option is not available when clipping by
Scalar.

Clip in pvpython

This following script demonstrates various aspects of using the Clip filter in pvpython.

Create the Clip filter.
>>> clip = Clip(Input=...)

Specify a 'ClipType' to use.
>>> clip.ClipType = 'Plane’

You can also use the SetProperties API instead.
>>> SetProperties(clip, ClipType='Plane')

>>> print(clip.GetProperty('ClipType') .GetAvailable())
['Plane', 'Box', 'Sphere', 'Scalar']

To set the plane origin and normal
>>> clip.ClipType.Origin [0, 0, 0]
>>> clip.ClipType.Normal [1, 0, 0]

If you want to change to Sphere and set center and
radius, you can do the following.

>>> clip.ClipType = 'Sphere’

>>> clip.ClipType.Center = [0, 0, 0]

>>> clip.ClipType.Radius = 12

Using SetProperties API, the same looks like

>>> SetProperties(clip, ClipType='Sphere')

>>> SetProperties(clip.ClipType, Center=[0, 0, 0],
Radius = 12)

To set Crinkle clipping.
>>> clip.Crinkleclip = 1

For clipping with scalar, you pick the scalar array
and then the value as follows:

>>> clip.ClipType = 'Scalar’

>>> clip.Scalars = ('POINTS', 'Temp')

>>> clip.Value = 100

1.5. Filtering Data 109

ParaView Users Guide Documentation, Release 5.12.0

As always, to get the list of available properties on
the clip filter, use help()

>>> help(clip)

Help on Clip in module paraview.servermanager object:

class Clip(SourceProxy)

Clip(**args)

The Clip filter cuts away a portion of the input data set using an implicit
function (an implicit description). This filter operates on all types of
data sets, and it returns unstructured grid data on output.

Method resolution order:
Clip
SourceProxy
Proxy
builtins.object

Methods defined here:

Initialize = aInitialize(self, connection=None, update=True)

Data descriptors defined here:

ClipType
This property specifies the parameters of the clip function (an implicit
description) used to clip the dataset.

Crinkleclip
This parameter controls whether to extract entire cells in the given
region or clip those cells so all of the output will stay only on that
side of region.

Exact
If this property is set to 1 it will clip to the exact specifications
for the **Box** option only, otherwise the clip will only approximate
the box geometry. The exact clip is very expensive as it requires
generating 6 plane clips. Additionally, **Invert** must be checked and
Crinkle clip must be unchecked.

HyperTreeGridClipper
This property specifies the parameters of the clip function (an implicit
description) used to clip the hyper tree grid.

Input
This property specifies the dataset on which the Clip filter will operate.

Invert
Invert which part of the geometry is clipped.

To get help on a specific implicit function type, make it the active

(continues on next page)

110 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)
ClipType and then use help()
>>> clip.ClipType = 'Plane’
>>> help(clip.ClipType)
Help on Plane in module paraview.servermanager object:

class Plane(Proxy)

Common Errors

It is very easy to forget that clipping a structured dataset such as image data can dramatically increase the memory
requirements, since this filter will convert the structured dataset into an unstructured grid due to the nature of the
clipping operation itself. For structured dataset, think about using S1ice or Extract Subset filters instead, whenever
appropriate. Those are not entirely identical operations, but they are often sufficient.

Slice

Fig. 1.79: Comparison between results produced by the Slice filter when slicing image data with an implicit plane
with different options. The lower-left image shows the output produced by the Clip filter when clipping with the same
implicit function, for contrast.

The Slice filter slices through the input dataset with an implicit function such as a plane, a sphere, or a box. Since this
filter returns data elements along the implicit function boundary, this is a dimensionality reducing filter (except when
crinkle slicing is enabled), i.e., if the input dataset has 3D elements like tetrahedrons or hexahedrons, the output will
have 2D elements, line triangles, and quads, if any. While slicing through a dataset with 2D elements, the result will
be lines.

The properties available on this filter, as well as the way of setting this filter up, is very similar to the Clip filter with a
few notable differences. What remains similar is the set up of the implicit function — you have similar choices: Plane

1.5. Filtering Data 111

ParaView Users Guide Documentation, Release 5.12.0

, Box , Sphere , and Cylinder , as well as the option to toggle Crinkle slice (i.e., to avoid cutting through cells,
pass complete cells from the input dataset that intersects the implicit function).

What is different includes the lack of slicing by Scalar (for that, you can use the Contour filter) and a new option,
Triangulate the slice. Fig. 1.79 shows the difference in the generated meshes when various slice properties are
changed.

The S1lice filter is more versatile than the S1ice representation. First, the S1ice representation is available for image
datasets only, whereas the Slice filter can be used on any type of 3D dataset. Second, the representation extracts a
subset of the image consisting of a 2D slice oriented in the XY, YZ, or XZ planes at the image voxel locations while the
plane used by the filter can be placed arbitrarily. Third, since the S1ice representation always shows a flat object and
lighting may interfere with interpretation of data values on the slice, lighting is not applied to the S1ice representation.
Lighting is applied, however, to results from the S1lice filter. Lastly, the S1ice representation may be faster than the
filter to update and scrub through different slices because it does not need to compute the intersection of a plane with
cells in the dataset.

In paraview, this filter can be created using the button on the Common filters toolbar, besides the Filters menu.

Extract Subset

= Properties (ExtractSubset0)

V Ol -10 | 10
-10 | 10
-10 | 10

Sample Rate | |1
Sample Rate] |1

Sample Rate K | 1

Include Boundary

Fig. 1.80: The Properties panel for the Extract Subset filter showing all available properties (including the ad-
vanced properties).

For structured datasets such as image datasets (Section 1.3.1), rectilinear grids (Section 1.3.1), and curvilinear grids
(Section 1.3.1), Extract Subset filter can be used to extract a region of interest or a subgrid. The region to extract
is specified using structured coordinates, i.e., the i, j, k values. Whenever possible, this filter should be preferred over
Clip or Slice for structured datasets, since it preserves the input data type. Besides extracting a subset, this filter can
also be used to resample the dataset to a coarser resolution by specifying the sample rate along each of the structured
dimensions.

112 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Extract Subset in paraview

This is one of the filters available on the Common filters toolbar To specify the region of interest, use the VOI property.
The values are specified as min and max values for each of the structured dimensions (¢, j, k,) in each row. Sample
Rate I, Sample Rate J, and Sample Rate K specify the sub-sampling rate. Set it to a value greater than one to
sub-sample. Include Boundary is used to determine if the boundary slab should be included in the extracted result, if
the sub-sampling rate along that dimension is greater than 1, and the boundary slab would otherwise have been skipped.

Threshold

Fig. 1.81: Results from using the Threshold filter on the iron_protein.vtk dataset from ParaView’s testing data.

The Threshold filter extracts cells of the input dataset with scalar values lying within the specified range, depending
on the selected threshold method. This filter operates on either point-centered or cell-centered data. Any type of dataset
can be used as input. The filter produces an unstructured grid output.

When thresholding with cell data, all cells that have scalars within the specified range will be passed through the filter.
When thresholding with point data, cells with all points with scalar values within the range are passed through if A11
Scalars is checked; otherwise, cells with any point that passes the thresholding criteria are passed through.

1.5. Filtering Data 113

ParaView Users Guide Documentation, Release 5.12.0

Threshold in paraview

Scalars Velocity

Component Mode — Selected

Selected ¥

Compenent

Lower Threshold 0 X
Upper Threshold ———— 42.21 x

4

Boodp@pgB

Threshold Method Between

All Scalars
Use Centinuous Cell Range

Invert

Fig. 1.82: The Properties panel for the Threshold filter.

This filter is represented as on the Common filters toolbar. After selecting the Scalars with which to threshold from
the combo-box, the Lower Threshold and Upper Threshold values can be modified to specify the range. If the
range shown by the sliders is not sufficient, it is also possible to manually type the values in the input boxes. The values
are deliberately not clamped to the current data range.

The threshold method can also be selected using the Threshold Method combo box:
¢ Between: Extracts cells with scalar values between the Lower Threshold and Upper Threshold.
* Below Lower Threshold: Extracts cells with scalar values smaller than the Lower Threshold.
e Above Upper Threshold: Extracts cells with scalar values larger than the Upper Threshold.

If the Scalars property is set to a vector array, the Component Mode property can be used to choose whether “All”
components must pass the threshold test, “Any” component needs to pass the threshold test, or if a “Selected” compo-
nent needs to pass the threshold test. If Component Mode is “Selected”, the Selected Component property desig-
nates which vector component needs to pass the threshold test. Other components are not tested.

Threshold in pvpython

Create the filter. If Input is not specified, the active source will be
used as the input.
>>> threshold = Threshold(Input=...)

Here's how to select a scalar array.
>>> threshold.Scalars = ("POINTS", "scalars'")

The value is a tuple where the first value is the association: either "POINTS"
or "CELLS", and the second value is the name of the selected array.

>>> print(threshold.Scalars)

['"POINTS', 'scalars']

>>> print (threshold.Scalars.GetArrayName())
'scalars’

(continues on next page)

114 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

>>> print(threshold.Scalars.GetAssociation())
'"POINTS'

Different threshold methods are available and are set using one of the following:
>>> threshold.ThresholdMethod = "Between" # Uses both lower and upper..
—values

>>> threshold.ThresholdMethod "Below Lower Threshold" # Uses only lower value

>>> threshold.ThresholdMethod = "Above Upper Threshold" # Uses only upper value

The adequate threshold values are then specified as:
>>> threshold.LowerThreshold = 63.75
>>> threshold.UpperThreshold = 252.45

To determine the types of arrays available in the input dataset, and their ranges, refer to the discussion on data infor-
mation in Section 1.3.3.

Iso Volume

The Iso Volume filter is similar to Threshold in that you use this to create an output dataset from an input where
the cells that satisfy the specified range are scalar values. In fact, the filter is identical to Threshold when the cell
data scalars are selected. For point data scalars, however, this filter acts similar to the Clip filters when clipping with
scalars, in that cells are clipped along the iso-surface formed by the scalar range.

Extract Selection

Extract Selection is a general-purpose filter to extract selected elements from a dataset. There are several ways
of making selections in ParaView. Once you have made the selection, this filter allows you to extract the selected
elements as a new dataset for further processing. We will cover this filter in more detail when looking at selections in
ParaView in Section 1.6.6.

1.5.7 Filters for geometric manipulation

These filters are used to transform the geometry of the dataset without affecting its topology or its connectivity.

Transform

The Transform can be used to arbitrarily translate, rotate, and scale a dataset. The transformation is applied by scaling
the dataset, rotating it, and then translating it based on the values specified.

As this is a geometric manipulation filter, this filter does not affect connectivity in the input dataset. While it tries
to preserve the input dataset type, whenever possible, there are cases when the transformed dataset can no longer be
represented in the same data type as the input. For example, with image data (Section 1.3.1) and rectilinear grids
(Section 1.3.1) that are transformed by rotation, the output dataset can be non-axis aligned and, hence, cannot be
represented as either data types. In such cases, the dataset is converted to a structured, or curvilinear, grid (Section
1.3.1). Since curvilinear grids are not as compact as the other two, the need to store the results in a more general data
type implies a considerable increase in the memory footprint.

1.5. Filtering Data 115

ParaView Users Guide Documentation, Release 5.12.0

Transform in paraview

You can create a new Transform from the Filters > Alphabetical menu. Once created, you can set the transform as the
translation, rotation, and scale to use utilizing the Properties panel. Similar to Clip, this filter also supports using
a 3D widget to interactively set the transformation.

DISPL Magnitude
1.998e+01

24616400

Fig. 1.83: The Transform filter showing the 3D widget that can be used to interactively set the transform.

Transform in pvpython

To create the filter(if Input is not specified, the active source will be
used as the input).
>>> transform = Transform(Input=...)

Set the transformation properties.

>>> transform.Translate.Scale = [1, 2, 1]

>>> transform.Transform.Translate = [100, 0, 0]
>>> transform.Transform.Rotate = [0, 0, 0]

Reflect

Reflected data (along X-Max) Original dataset

.

Fig. 1.84: The Reflect filter can be used to reflect a dataset along a specific axis plane.

Reflect can be used to reflect any dataset across an axis plane. You can pick the axis plane to be one of the planes
formed by the bounding box of the dataset. For that, set Plane as X Min,X Max,Y Min,Y Max,Z Min,orZ Max.

116 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

To reflect across an arbitrary axis plane, select X, Y, or Z for the Plane property, and then set the Center to the plane
offset from the origin.

This filter reflects the input dataset and produces an unstructured grid (Section 1.3.1). Thus, the same caveats for C1lip
and Threshold filter apply here when dealing with structured datasets.

Warp By Vector

Fig. 1.85: The Warp By Vector filter can be used to displace points in original data shown on the left, using the
displacement vectors (indicated by arrow glyphs Section 1.5.8) to produce the result shown on the right.

Warp By Vector can be used to displace point coordinates in an input mesh using vectors in the dataset itself. You
select the vectors to use utilizing the Vectors property on the Properties panel. Scale Factor can be used to
scale the displacement applied.

Warp By Scalar

Warp By Scalar is similar to Warp By Vector in the sense that it warps the input mesh. However, it does so using
a scalar array in the input dataset. The direction of displacement can either be explicitly specified using the Normal
property, or you can check Use Normal to use normals at the point locations.

1.5.8 Filters for sampling

These filters compute new datasets that represent some essential features from the datasets that they take as input.

Glyph

Glyph is used to place markers or glyphs at point locations in the input dataset. The glyphs can be oriented or scaled
based on vector and scalar attributes on those points.

To create this filter in paraview, you can use the Filters menu, as well as the button on the Common filters toolbar. You
first select the type of glyph using one of the options in Glyph Type . The choices include Arrow, Sphere , Cylinder
, etc. Next, you select the point arrays to use as the Orientation Array (selecting No orientation array will
result in the glyphs not being oriented). Similarly, you select a point array to serve as the glyph Scale Array (no
scaling is performed if No scale array is chosen).

If the Scale Array is set to a vector array, the Vector Scale Mode property is available to select which properties
of the vector should be used to transform each glyph. If Scale by Magnitude is chosen, then the glyph at a point
will be scaled by the magnitude of the vector at that point. If Scale by Components is chosen, glyphs will be scaled
separately in each dimension by the vector component in that dimension.

1.5. Filtering Data 117

ParaView Users Guide Documentation, Release 5.12.0

== Properties (Glyph1)
Glyph Source
Glyph Type Arrow ﬂ

Orientation

Qrientation Array ACCL

<>

Scale

Scale Array ACCL
Vector Scale Mode Scale by Magnitude

Scale Factor 1.62211 x

(1M <> <>

Masking

Glyph Mode Uniform Spatial Distribution (Bounds Based)

&

Maximum Number
Of Sample Points

Seed 10339

5000

Fig. 1.86: The Properties panel for the Glyph filter.

The Scale Factor is used to apply a constant scaling to all the glyphs, independent of the Scale Array and Vector
Scale Mode properties. Choosing a good scale factor depends on several things including the bounds on the input
dataset, the Scale Arrayand Vector Scale Mode selected, and the range for the array selected as the Scale Array
. You can use the button next to the Scale Factor widget to have paraview pick a usually reasonable scale factor
value based on the current dataset and scaling properties.

The Masking properties control which points from the input dataset get glyphed. The Glyph Mode controls how points
are selected to be glyphs (Fig. 1.87). The available options are as follows:

e All Points : This selects all points in the input dataset for glyphing. Use this mode with caution and only
when the input dataset has relatively few points. Since all points in the input dataset are glyphed, this can not
only cause visual clutter, but also clog up memory and take a long to time to generate and render the glyphs.

« Every Nth Points : This elects every nt" point in the input dataset for glyphing, where n can be specified
using Stride . Setting Stride to 1 will have the same effect as A11 Points.

e Uniform Spatial Distribution (Bounds Based) : This selects a random set of points. The algorithm
works by first computing up to Maximum Number of Sample Points in the space defined by the bounding
box of the input dataset. Then, points in the input dataset that are close to the point in this set of sample points
are glyphed. The Seed is used to seed the random number generator used to generate the sample points. This
ensures that the random sample points are reproducible and consistent.

e Uniform Spatial Distribution (Surface Sampling) : Selects a random set of points from the outer
bounding surface of the input dataset. An inverse transform sampler is used to find a 2D cell on the surface to
sample and a point is uniformly sampled from that cell.

e Uniform Spatial Distribution (Volume Sampling) : Similar to the surface sampling mode described
above, but the inverse transform sampler is used to find a 3D cell from which a random point is uniformly sampled

Did you know?

The Glyph representation can be used for many of the same visualizations where a Glyph filter might be used. It may
offer faster rendering and consume less memory than the Glyph filter with similar capabilities. In circumstances where

118 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

All Points Uniform Spatial Distribution

Fig. 1.87: Comparison between various Glyph Mode s when applied to the same dataset generated by the Wavelet
source.

generating a 3D geometry is required, e.g., when exporting glyph geometry to a file, the Glyph filter is required.

Glyph With Custom Source

Glyph With Custom Source is the same as Glyph , except that instead of a limited set of Glyph Type , you can
select any data source producing a polygonal dataset (Section 1.3.1) available in the Pipeline Browser . To use
this filter, select the data source you wish to glyph in the Pipeline Browser and attach this filter to it. You will be
presented a dialog where you can set the Input (which defaults to the source you selected) and the Glyph Source .

@ L] M Change Input Dialog

SAvailable Input Ports Select Glyph Source

Input B can.ex2
alyph Sou
o L B Spherel

B Transform

Fig. 1.88: Setting the Input and Glyph Source in the Glyph With Custom Source filter.

1.5. Filtering Data 119

ParaView Users Guide Documentation, Release 5.12.0

Stream Tracer

Fig. 1.89: Streamlines generated from the disk_out_ref.ex2 dataset using the Point Source (left) and the High
Resolution Line Source (right). On the left, we also added the Tube filter to the output of the Stream Tracer
filter to generate 3D tubes rather than 1D polygonal lines, which can be hard to visualize due to lack of shading.

The Stream Tracer filter is used to generate streamlines for vector fields. In visualization, streamlines refer to curves
that are instanteneously tangential to the the vector field in the dataset. They provide an indication of the direction in
which the particles in the dataset would travel at that instant in time. The algorithm works by taking a set of points,
known as seed points, in the dataset and then integrating the streamlines starting at these seed points.

In paraview, you can create this filter using the Filters menu, as well as the button on the Common filters toolbar. To
use this filter, you first select the attribute array to use as the Vectors for generating the streamline. Integration
Parameters let you fine tune the streamline integration by specifying the direction to integrate, Integration
Direction, as well as the type of integration algorithm to use, Integrator Type . Advanced integration param-
eters are available in the advanced view of the Properties panel that let you further tune the integration, including
specifying the step size and others. You use the Maximum Streamline Length to limit the maximum length for the
streamline — the longer the length, the longer the generated streamlines.

Seeds group lets you set how the seed points for generating the streamlines are produced. You have two options: Point
Source , which produces a point clound around the user-specified Point based on the parameters specified, and High
Resolution Line Source, which produces seed points along the user-specified line. You can use the 3D widgets
shown in the active Render View to interactively place the center for the point cloud or for defining the line.

Did you know?

The Stream Tracer filter produces a polydata with 1D lines for each of the generated streamlines. Since 1D lines
cannot be shaded like surfaces in the Render View, you can get visualizations where it is hard to follow the streamlines.
To give the streamlines some 3D structure, you can apply the Tube filter to the output of the streamlines. The properties
on the Tube filter let you control the thickness of the tubes. You can also vary the thickness of the tubes based on data
array, e.g., the magnitude of the vector field at the sample points in the streamline!

A script using the Stream Tracer filter in paraview typically looks like this:

120 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

-] [] W Froperties
Apply Reset X Delete T
Search ... (use Esc to clear text) key
= Properties [(StreamTracer) a B o Id

Veclors RTDataGradient o
Integration Parameters

Integration

TH

Direction = B
Integrator Type Runge-Kutta 4-5 2]
Streamline Parameters

BAaxifmum

Streamline Length 20 ¥
Seads

Seed Type High Resolution Line Source E

Line Parametars
Length: 34.647

3 Show Line
Paintl -10 -10 -10
Paint2 10 10 10

Hote: Use "P' to place alternating points on mesh or 'Cmd+P* to
snap to the closest mesh point, Use "1""Cmd+1" for paint 1 and
'2''Cmd+2" for point 2.

X Axis Y Axis L Axis

Center on Bounds

Resolution 1000
a4 Display (GeometryRepresentati = 3 0 &

db View (Render View) B b o W

Fig. 1.90: The Properties panel showing the default properties for the Stream Tracer filter.

1.5. Filtering Data 121

ParaView Users Guide Documentation, Release 5.12.0

find source
>>> disk_out_refex2 = FindSource('disk_out_ref.ex2')

create a new 'Stream Tracer'

>>> streamTracerl = StreamTracer(Input=disk_out_refex2,
SeedType="Point Source')

>>> streamTracerl.Vectors = ['POINTS', 'V']

init the 'Point Source' selected for 'SeedType'
>>> streamTracerl.SeedType.Center = [0.0, 0.0, 0.07999992370605469]
>>> streamTracerl.SeedType.Radius 2.015999984741211

show data in view
>>> Show()

create a new 'Tube'
>>> tubel = Tube(Input=streamTracerl)

Properties modified on tubel
>>> tubel.Radius = 0.1611409378051758

show the data from tubes in view
>>> Show()

Stream Tracer With Custom Source

Stream Tracer allows you to specify the seed points either as a point cloud or as a line source. However, if you
want to provide your own seed points from another data producer, use the Stream Tracer With Custom Source.
Similar to Glyph With Custom Source , this filter allows you to pick a second input connection to use as the seed
points.

Resample With Dataset

Resample With Dataset samples the point and cell attributes of one dataset on to the points of another dataset. The
two datasets are supplied to the filter using its two input ports: Input , which is the dataset that provides the attributes
to resample, and Source , which is the dataset that provides the points to sample at. This filter is available under the
Filters menu.

Resample To Image

Resample To Image is a specialization of Resample With Dataset . The filter takes one input and samples its
point and cell attributes onto a uniform grid of points. The bounds and extents of the uniform grid can be specified
using the properties panel. By default, the bounds are set to the bounds of the input dataset. The output of the filter is
an Image dataset.

Some operations can be performed more efficiently on uniform grid datasets. Volume rendering is one such operation.
The Resample to Image filter can be used to convert any dataset to Image data before performing such operations.

122 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

2.931e+02

Fig. 1.91: Streamlines generated from the disk_out_ref.ex2 dataset using the output of the Slice filter as the
Source for seed points.

Multiblock Unstructured Grid (source) Multiblock Unstructured Grid (Input) Resample With Dataset Output

Fig. 1.92: An example of Resample With Dataset . On the left is a multiblock tetrahedra mesh (Input). The
middle shows a multiblock unstructured grid (Source). The outline of Input is also shown in this view. The result
of applying the filter is shown on the right

1.5. Filtering Data 123

ParaView Users Guide Documentation, Release 5.12.0

Properties &)
= Properties (ResampleTolmage1) | 3|0 . =

Use Input Bounds

Sampling

ekl [100 [100 100

Sampling Bounds [-.-’.!!.H!db] B3776855 | B.31258201599121

lo E
|-'I-i FIFIFI0A0I2ST |-1 JTEN0ATEZ0449 X=||Q

(% 0w e

g View (Render View) |[2'h m o3

Fig. 1.93: The Properties panel for Resample To Image filter.

Input Unstructured Grid Resampled Uniforrn Grid (vikimage Data) Volume Rendering of Resampled Uniform Gricd

Fig. 1.94: An example of Resample To Image . The left portion shows the input (unstructured grid), and the middle
displays the output image data. On the right is a volume rendering of the resampled data.

124 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Probe

Probe samples the input dataset at a specific point location to obtain the cell data attributes for the cell containing the
point as well as the interpolated point data attributes. You can either use the SpreadSheet View or the Information
panel to inspect the probed values. The probe location can be specified using the interactive 3D widget shown in the
active Render View.

Plot over line

ParaView 4.2.0-RC1 64-bit

Fle Edit View Sources Filters Tools Catalyst Macros Help

p&eg» F?Ek K> D> E Tmelo [:
"I 4 x o) [epresenation. -] R B 5 4 BAB [BEGGG
EO0PRIZOESL® Extract Location [}, 90 ¥ O

Pipeline Browser
i builtin
@ @disk_out_refex2

Olayout #1x | +

ALY Renderviewl (m[E]0]x] B & & & & LineChartviewl (m]8]o]x]

Properties | information |
Properties B

Reset | % Delete| 2
back
= Properties (Plotovertine] || @ || &
= Display
= View (Render View) [

Background
Gradient
@ Color 1 |/ Restore pefault

@ Color 2 /| Restore Default

Fig. 1.95: The Plot Over Line filter applied to the disk_out_ref.ex2 dataset to plot values at sampled locations
along the line. Gaps in the line correspond to the locations in the input dataset where the line falls outside the dataset.

Plot Over Line will sample the input dataset along the specified line and then plot the results in Line Chart View
. Internally, this filter uses the same mechanism as the Probe filter, probing along the points in the line to get the
containing cell attributes and interpolated point attributes.

Using the Resolution property on the Properties panel, you can control the number of sample points along the
line.

1.5. Filtering Data 125

ParaView Users Guide Documentation, Release 5.12.0

1.5.9 Filters for attribute manipulation

The filters covered in this section are used to add new attribute arrays to the dataset, which are typically used to add
derived quantities to use in pipelines for further processing.

Calculator

The Calculator filter computes a new data array or new point coordinates as a function of existing input arrays. If
point-centered arrays are used in the computation of a new data array, the resulting array will also be point-centered.
Similarly, computations using cell-centered arrays will produce a new cell-centered array. If the function is computing
point coordinates (requested by checking the Coordinate Results property on the Properties panel) , the result
of the function must be a three-component vector. The Calculator interface operates similarly to a scientific calcu-
lator. In creating the function to evaluate, the standard order of operations applies. Each of the calculator functions is
described below. Unless otherwise noted, enclose the operand in parentheses using the (and) buttons.

e Clear : Erase the current function.
 /: Divide one scalar by another. The operands for this function are not required to be enclosed in parentheses.

» *: Multiply two scalars, or multiply a vector by a scalar (scalar multiple). The operands for this function are not
required to be enclosed in parentheses.

¢ -: Negate a scalar or vector (unary minus), or subtract one scalar or vector from another. The operands for this
function are not required to be enclosed in parentheses.

* +: Add two scalars or two vectors. The operands for this function are not required to be enclosed in parentheses.
* iHat, jHat, and kHat are vector constants representing unit vectors in the X, Y, and Z directions, respectively.
¢ sin(x) : Compute the sine of a scalar.

¢ cos(x) : Compute the cosine of a scalar.

* tan(x) : Compute the tangent of a scalar.

¢ abs(x) : Compute the absolute value of a scalar.

e sqrt(x) : Compute the square root of a scalar.

e asin(x) : Compute the arcsine of a scalar.

* acos(x) : Compute the arccosine of a scalar.

¢ atan(x) : Compute the arctangent of a scalar.

* ceil(x) : Compute the ceiling of a scalar.

e floor(x) : Compute the floor of a scalar.

* sinh(x) : Compute the hyperbolic sine of a scalar.

* cosh(x) : Compute the hyperbolic cosine of a scalar.

e tanh(x) : Compute the hyperbolic tangent of a scalar.

* x*y : Raise one scalar to the power of another scalar. The operands for this function are not required to be
enclosed in parentheses.

* exp(x) Raise e‘ to the power of a scalar.
e dot(x, y) : Compute the dot product of two vectors x and y.

* mag(x) : Compute the magnitude of a vector.

126 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

norm(x) : Normalize a vector. The operands are described below. The digits 0-9 and the decimal point are used
to enter constant scalar values.

In(x) : Compute the logarithm of a scalar to the base e.

log10(x) : Compute the logarithm of a scalar to the base 10.

Additional operations are available in the Calculator filter that do not have buttons in the user interface, including:

avg(x, y, z, ...): Average of all the input arguments.

clamp(r®, x, rl) : Clamp X in range between 10 and r1.

cross(x, y) : Compute cross product of two vectors X and y.

equal (x, y) : Equality test between x and y using normalized epsilon.
erf(x) : Error function of x.

erfc(x) : Complimentary error function of x.

frac(x) : Fractional portion of x.

hypot(x, y) : Hypotenuse of x and y, equivalent of sqrt(x*x + y*y).

iclamp(r®, x, rl) : Inverse-clamp x outside of the range r0O and rl. If x is within the range it will snap to
the closest bound.

inrange(r®, x, rl) : Returns true when x is within the range r0 and r1.
loglp(x) : Natural logarithm of 1 + x, where x is very small.

log2(x) : Base 2 logarithm of x.

logn(x, n) : Base N logarithm of x where n is a positive integer.

min(x, y) : Compute minimum of two scalars.

max(x, y) : Compute maximum of two scalars.

mul(z, y, z, ...):Multiply all the inputs together.

ncdf(x) : Normal cumulative distribution function.

not_equal(x, y) : Not-equal test between x and y using normalised epsilon.
pow(x, y) : x to the power of y.

root(x, n) : nth-root of x where n is a positive integer.

round(x) : Round x to the nearest integer

roundn(x, n) : Round x to n decimal places.

sgn(x) : Compute the sign of x: -1 where x < 0, +1 where x > 0, and 0 otherwise.
sum(x, y, Z, ...):Sum of all the inputs.

trunc(x) : Integer portion of x.

acosh(x) : Inverse hyperbolic cosine of x expressed in radians.

asinh(x) : Inverse hyperbolic sine of x expressed in radians.

atan2(x, y) : Arctangent of (x / y) expressed in radians.

atanh(x) : Inverse hyperbolic tangent of x expressed in radians.

cot(x) : Cotangent of x.

csc(x) : Cosecant of x.

1.5. Filtering Data 127

ParaView Users Guide Documentation, Release 5.12.0

¢ sec(x) : Secant of x.
* sinc(x) : Cardinal sine of x.
* deg2rad(x) : Convert x from degrees to radians.
* deg2grad(x) : Convert x from degrees to gradians.
* rad2deg(x) : Convert x from radians to degrees.
e grad2deg(x) : Convert x from gradians to degrees.

The following equalities and inequalities are available:
e ==or =: True only if x is strictly equal to y.
e <>or !=: True only if x does not equal y.
e <: True only if x is less than y.
e <=: True only if x is less than or equal to y.
e > True only if x is greater than y.
* >=: True only if x is greater than or equal to y.

The following conditionals and boolean operators are available:
e if(x, y, 2z): If x evaluates to true, then y, otherwise z.
e true: True state.
» false : False state.
* x and y: Logical and, true only if x and y are both true.
e mand(x, y, z, ...): Multi-input logical and, true only if all arguments are true.
e mor(x, y, z, ...):Multi-inputlogical or, true if any arguments are true.
* x nand y: Logical nand, true only if either x or y is false.
* x nor y: Logical nor, true only if neither x or y is false.
* not x: Logical not, evaluate to the opposite of the input boolean value.
* x or y: Logical or, true if either x or y is true.
e x xor y: Logical xor, true only if the logical state of x or y are different.
* x xnor y: True if and only if both logical inputs are the same.

The Scalars menu lists the names of the scalar arrays and the components of the vector arrays of either the point-
centered or cell-centered data. The Vectors menu lists the names of the point-centered or cell-centered vector arrays.
The function will be computed for each point (or cell) using the scalar or vector value of the array at that point (or cell).
The filter operates on any type of dataset, but the input dataset must have at least one scalar or vector array. The arrays
can be either point-centered or cell-centered. The Calculator filter’s output is of the same dataset type as the input.

Did you know?

It used to be a common use-case for the Calculator filter to convert three input scalars into a vector array. For that,
the Function would look something like: scalar, x iHat + scalar, * jHat + scalar, x kHat.

Now, the Merge Vector Components filter provides a simpler way to do this by simply selecting the three scalars to
combine into a vector array.

128 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Properties (& ()

#Apply | @Reset % Delete

Search ... (use Esc to clear text)
== Properties (Calculator1) ' e
Attribute Type Point Data -
Coordinate Results
Result Normals
Result TCoords

Result Array Name Result

log10(Temp}
Clear () iHat jHat kHat
sin cos tan abs sqrt +
asin acos atan ceil Floor -
sinh cosh tanh XMy exp *
dot mag norm Ty log10 /
Scalars v Vectors v

v Replace Invalid Results
Replacement Value 0

Result Array Type | Double -

Fig. 1.96: The Properties panel for the Calculator filter showing the advanced properties.

1.5. Filtering Data 129

ParaView Users Guide Documentation, Release 5.12.0

The Properties panel provides access to several options for this filter. Checking Coordinate Results, Result
Normals , or Result TCoords will set the computed array as the point coordinates, normals, or texture coordinates,
respectively. Result Array Name is used to specify a name for the computed array. The default is Result.

Sometimes, the expression can yield invalid values. To replace all invalid values with a specific value, check
the Replace Invalid Results checkbox and then enter the value to use to replace invalid values using the
Replacement Value . The output array data type is set with the Result Array Type property.

To ease the reuse of expressions, three helper buttons are also present to load an expression, save the current one and
inspect the list of already saved expressions from the Expression Manager.

Expression Manager

ParaView provides an Expression Manager to ease the expression property configuration by storing expressions, and
giving quick access to them. Each expression can be named and has an associated group so it is easy to filter Python
expressions from others.

This feature comes in two parts:

From the Property Panel, the one-line property text entry is augmented with:
* adrop down list to access existing expressions
e aSave Current Expression button

* ashortcut to the Choose Expression dialog

[c ¥ © PythonAnnotation1

Properties Information
Properties ()]
@ % Delete ?
Search ... (use Esc 1o clear text) o
= Properties (PythonAnnotatior | ¢ o -
Array Association| o Point Data b

DistanceSquared /
Expression mean(DistanceSquared)

MyCustomExpressionName

norm .
abs(X) 4%
numpy.sin(Xx)

= Display (TextSourceRepresern |[Ef

Text Prop Mode 2D Text Widget

v
Text Position

Fig. 1.97: Expression-related buttons in the Properties Panel.

The Choose Expression dialog, also accessible from the Tools > Manage Expressions menu item, is an editable
and searchable list of the stored expressions. ParaView keeps track of them through the settings, but they can also be
exported to a JSON file for backup and sharing.

130 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Search ... (use Esc to clear text) All v
Type v Name Content
Expression cos(X)
Expression sin(X) w
Python abs(X)
Remave All
Python numpy.sin(X)
Import
Python MyCustomExpressionName numpy.cos(X)
Export
Python norm DistanceSquared / mean(DistanceSquared)
k Cancel
Save
Close
Fig. 1.98: Choose Expression Dialog.
Python calculator
| E—— | | el |
== properties (PythonCalculatorl) |
Expression |inputs[ﬂ].PnintData["RTData"] - input[l].Pninﬂ;
Array Association | pgint Data |T]
Array Name [result l
(% Copy Arrays
= Display |

Fig. 1.99: The Properties Panel for Python Calculator.

The Python Calculator issimilarto Calculator inthat it processes one or more input arrays based on an expression
provided by the user to produce a new output array. However, it uses Python (and NumPy) to do the computation.
Therefore, it provides more expressive computational capabilities.

Specify whether to Use Multiline Expression, the Expression to use, the Array Association to indicate the
array association (Point Data, Cell Data, or Field Data), the name of output array (Array Name), a toggle that
controls whether the input arrays are copied to the output (Copy Array), and a Result Array Type to specify the
type of output data array to store the calculated results in.

The Python Calculator also integrated the Expression Manager described in Section 1.5.9.

1.5. Filtering Data 131

ParaView Users Guide Documentation, Release 5.12.0

Basic tutorial

Start by creating a Sphere source and applying the Python Calculator toit. As the first expression, use the following
and apply:

C)
This should create an array name result in the output point data. Note that this is an array that has a value of 5 for each

point. When the expression results in a single value, the calculator will automatically make a constant array. Next, try
the following:

[Normals J

Now, the result array should be the same as the input array Normals. As described in detail later, various functions are
available through the calculator. For example, the following is a valid expression:

[sin(Normals) + 5 J

It is very important to note that the Python Calculator has to produce one value per point or cell depending on the
Array Association parameter. Most of the functions described here apply individually to all point or cell values and
produce an array the same dimensions as the input. However, some of them, such asmin() and max() , produce single
values.

Common Errors

In the Programmable Filter, all the functions in vtk.numpy_interface.algorithms are imported prior to ex-
ecuting the script. As a result, some built-in functions, such as min and max , are clobbered by that import. To use the
built-in functions, import the import __builtin__ module and access those functions with, e.g., __builtin__.min
and __builtin__.max

Accessing data

There are several ways of accessing input arrays within expressions. The simplest way is to access it by name:

[sin(Normals) + 5 J

This is equivalent to:

[sin(inputs[@].PointData['Normals']) + 5 J

The example above requires some explanation. Here, inputs[0] refer to the first input (dataset) to the filter. Python
Calculator can accept multiple inputs. Each input can be accessed as inputs[0] , inputs[1],... You can access
the point or cell data of an input using the .PointData or .CellData qualifiers. You can then access individual arrays
within the point or cell data containers using the [] operator. Make sure to use quotes or double-quotes around the
array name. Arrays that have names with certain characters (such as space, +, -, *, /) can only be accessed using this
method.

Certain functions apply directly on the input mesh. These filters expect an input dataset as argument. For example,

[area(inputs [01) J

For data types that explicitly define the point coordinates, you can access the coordinates array using the .Points
qualifier. The following extracts the first component of the coordinates array:

132 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

[inputs [0].Points[:,0] J

Note that for certain data types, mainly image data (uniform rectilinear grids) and rectilinear grids, point coordinates
are defined implicitly and cannot be accessed as an array.

Comparing multiple datasets

The Python Calculator can be used to compare multiple datasets, as shown by the following example.
* Go to the Menu Bar, and select Edit > Reset Session to clear the Pipeline.

e Select Source > Mandelbrot, and then click Apply, which will set up a default version of the Mandelbrot Set.
The data for this set are stored in a 251 x 251 scalar array.

 Select Source > Mandelbrot again, and then go to the Properties panel and set the Maximum Number of
Iterations to 50. Click Apply , which will set up a different version of the Mandelbrot Set, represented by the
same size array.

* Hold the Shift key down and select both of the Mandelbrot entries in the Pipeline Inspector, and then go to the
Menu Bar, and select Filter > Python Calculator. The two Mandelbrot entries will now be shown as linked, as
inputs, to the Python Calculator.

* In the Properties panel for the Python Calculator filter, enter the following into the Expression box:

Einputs[l] .PointData['Iterations'] - inputs[0].PointData['Iterations'] J

This expression specifies the difference between the second and the first Mandelbrot arrays. The result is saved
in a new array called results . The prefixes in the names for the array variables, inputs[1] and inputs[0],
refer to the first and second Mandelbrot entries, respectively, in the Pipeline. PointData specifies that the inputs
contain point values. The quoted label 'Iterations' is the local name for these arrays. Click Apply to initiate
the calculation.

Click the Display tab in the Properties Panel for the Python Calculator , and go to the first tab to the right
of the Color by label. Select the item results in that tab, which will cause the display window to the right to show
the results of the expression we entered in the Python Calculator . The scalar values representing the difference
between the two Mandelbrot arrays are represented by colors that are set by the current color map (click the Edit button
to open a detailed editor for the current color map).

There are a few things to note:
e Python Calculator will always copy the mesh from the first input to its output.

 All operations are applied point-by-point. In most cases, this requires that the input meshes (topology and ge-
ometry) are the same. At the least, it requires that the inputs have the same number of points and cells.

* In parallel execution mode, the inputs have to be distributed exactly the same way across processes.

Basic Operations

The Python Calculator supports all of the basic arithmetic operations using the +, —, * and / operators. These are
always applied element-by-element to point and cell data including scalars, vectors, and tensors. These operations also
work with single values. For example, the following adds 5 to all components of all Normals.

[Normals + 5 J

The following adds 1 to the first component, 2 to the second component, and 3 to the third component:

1.5. Filtering Data 133

ParaView Users Guide Documentation, Release 5.12.0

[Normals + [1,2,3]]

This is specially useful when mixing functions that return single values. For example, the following normalizes the
Normals array:

[(Normals - min(Normals))/(max(Normals) - min(Normals)) }

A common use case in a calculator is to work on one component of an array. This can be accomplished with the
following:

[Normals[: , 0]]

The expression above extracts the first component of the Normals vector. Here, : is a placeholder for “all elements”.
One element can be extracted by replacing : with an index. For example, the following creates a constant array from
the first component of the normal of the first point:

[Normals[@, 0] J

Alternatively, the following assigns the normal of the first point to all points:

[Normals[@, :]]

It is also possible to create a vector array from two or three scalar arrays using the make_vector () function:

[make_vector (velocity_x, velocity_y, velocity_z)]

For temporal datasets, you also have access to the dataset timestep index or time value in the expression as t_index
or time_index , and t_value or time_value respectively. When dealing with multiple inputs, you can specify the
same variable names scoped on the appropriate input e.g. inputs[0].t_index.

The locations of points are available in the Points variable for datasets that define explicit points positions.

In some datasets, field data is used to store global data values not associated with cells or points. To use field data in
a Python Calculator expression, access it with the FieldData dictionary available in the input as in the following
example:

[VolumeOfCell * inputs[0].FieldData['MaterialData'][time_index] J

Did you know?

Under the cover, the Python Calculator uses NumPy. All arrays in the expression are compatible with NumPy
arrays and can be used where NumPy arrays can be used. For more information on what you can do with these arrays,
consult with the NumPy references [NumPydevelopers].

134 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Functions

The following is a list of functions available in the Python Calculator . Note that this is a partial list, since most
of the NumPy and SciPy functions can be used in the Python Calculator . Many of these functions can take single
values or arrays as argument.

abs(x) : Returns the absolute value(s) of x.

add(x, y) : Returns the sum of two values. = and y can be single values or arrays. This is the same as x + y.
area(dataset) : Returns the surface area of each cell in a mesh.

aspect(dataset) : Returns the aspect ratio of each cell in a mesh.

aspect_gamma(dataset) : Returns the aspect ratio gamma of each cell in a mesh.

condition(dataset) : Returns the condition number of each cell in a mesh.

cross(x, y) : Returns the cross product for two 3D vectors from two arrays of 3D vectors.

curl(array) : Returns the curl of an array of 3D vectors.

divergence(array) : Returns the divergence of an array of 3D vectors.

divide(x, y) : Element-by-element division. 2 and y can be single values or arrays. This is the same as
math:frac{x}{y}.

det(array) : Returns the determinant of an array of 2D square matrices.
determinant (array) : Returns the determinant of an array of 2D square matrices.
diagonal (dataset) : Returns the diagonal length of each cell in a dataset.
dot(al, a2) : Returns the dot product of two scalars/vectors of two array of scalars/vectors.
eigenvalue(array) : Returns the eigenvalue of an array of 2D square matrices.
eigenvector(array) : Returns the eigenvector of an array of 2D square matrices.
exp(x) : Returns e”.

gradient (array) : Returns the gradient of an array of scalars or vectors.
inv(array) : Returns the inverse an array of 2D square matrices.

inverse(array) : Returns the inverse of an array of 2D square matrices.
jacobian(dataset) : Returns the jacobian of an array of 2D square matrices.
laplacian(array) : Returns the jacobian of an array of scalars.

In(array) : Returns the natural logarithm of an array of scalars/vectors/tensors.
log(array) : Returns the natural logarithm of an array of scalars/vectors/tensors.
logl®(array) : Returns the base 10 logarithm of an array of scalars/vectors/tensors.

make_point_mask_from_NaNs(dataset, array) : This function will create a ghost array corresponding
to an input with NaN values. For each NaN value, the output array will have a corresponding value of vtk.
vtkDataSetAttributes.HIDDENPOINT . These values are also combined with any ghost values that the dataset
may have.

make_cell_mask_from_NaNs(dataset, array) : This function will create a ghost array corresponding to
an input with NaN values. For each NaN value, the output array will have a corresponding value of vtk.
vtkDataSetAttributes.HIDDENCELL . These values are also combined with any ghost values that the dataset
may have.

1.5.

Filtering Data 135

ParaView Users Guide Documentation, Release 5.12.0

max (array) : Returns the maximum value of the array as a single value. In parallel, compute the max accross
processes.

max_angle(dataset) : Returns the maximum angle of each cell in a dataset.
mag(a) : Returns the magnitude of an array of scalars/vectors.

mean(array) : Returns the mean value of an array of scalars/vectors/tensors. In parallel, compute the mean
acCross processes.

min(array) : Returns the minimum value of the array as a single value. In parallel, compute the min accorss
processes.

min_angle(dataset) : Returns the minimum angle of each cell in a dataset.
mod(x, y) : Same as remainder (x,y).

multiply(x, y) : Returns the product of and y. x and y can be single values or arrays. Note that this is an
element-by-element operation when x and y are both arrays. This is the same as x X y.

negative(x) : Same as —zx.
norm(a) : Returns the normalized values of an array of scalars/vectors.

power(x, a) : Exponentiation of z with a. Here, both x and a can either be a single value or an array. If x and
y are both arrays, a one-by-one mapping is used between two arrays.

reciprocal (x) : Returns %

remainder(x, y) : Returns z — y x floor(%). x and y can be single values or arrays.
rint(x) : Rounds x to the nearest integer(s).

shear (dataset) : Returns the shear of each cell in a dataset.

skew(dataset) : Returns the skew of each cell in a dataset.

square(x) : Returns = * x.

sqrt(x) : Returns ¥/z.

strain(array) : Returns the strain of an array of 3D vectors.

subtract(x, y) : Returns the difference between two values. x and y can be single values or arrays. This is
the same as x — y.

surface_normal (dataset) : Returns the surface normal of each cell in a dataset.
trace(array) : Returns the trace of an array of 2D square matrices.

volume (dataset) : Returns the volume normal of each cell in a dataset.
vorticity(array) : Returns the vorticity/curl of an array of 3D vectors.

vertex_normal (dataset) : Returns the vertex normal of each point in a dataset.

136

Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Trigonometric Functions

Below is a list of supported trigonometric functions:

sin(x) arccos(x) cosh(x) arctanh(x)
cos(x) arctan(x) tanh(x)

tan(x) hypot(x1l, x2) arcsinh(x)

arcsin(x) sinh(x) arccosh(x)

Gradient

The Gradient filter computes the gradient of a cell or point data array for any type of dataset.

For unstructured grids, the gradient for cell data corresponds to the cell derivatives. For point data, the gradient at a
given point is computed as the average of the derivatives of the cells to which the point belongs.

For structured grids, the gradient is computed using central differencing, except on the boundary of the dataset where
forward and backward differencing is used for the boundary elements.

This filter can optionally compute the divergence, vorticity (also known as the curl), and Q-criterion. A 3-component
array is required in order to compute these quantities. By default, only the gradient computation is enabled.

In the case of a uniform rectilinear grid (see Section 1.3.1), a specific implementation which efficiently computes
the gradient of point data arrays is also available. This implementation extends the use of central differencing on
the boundary elements after duplication of the boundary values. To activate this option, set the Boundary Method
property to Smoothed, as shown in Fig. 1.100.

Mesh Quality

The Mesh Quality filter creates a new cell array containing a geometric measure of each cell’s fitness. Different
quality measures can be chosen for different cell shapes.

Triangle Quality indicates which quality measure will be used to evaluate triangle quality. The Radius Ratio is
the size of a circle circumscribed by a triangle’s three vertices divided by the size of a circle tangent to a triangle’s three
edges. The Edge Ratio is the ratio of the longest edge length to the shortest edge length.

Quad Quality indicates which quality measure will be used to evaluate quad cells.

Tet Quality indicates which quality measure will be used to evaluate tetrahedral quality. The Radius Ratio is the
size of a sphere circumscribed by a tetrahedron’s four vertices divided by the size of a circle tangent to a tetrahedron’s
four faces. The Edge Ratio is the ratio of the longest edge length to the shortest edge length. The Collapse Ratio
is the minimum ratio of height of a vertex above the triangle opposite it, divided by the longest edge of the opposing
triangle across all vertex/triangle pairs.

HexQualityMeasure indicates which quality measure will be used to evaluate quality of hexahedral cells.

1.5. Filtering Data 137

ParaView Users Guide Documentation, Release 5.12.0

Properties ()

@ % Delete

iy

Search ... (use Esc to clear text) fo3

- = .
= S]

Scalar Array smoothed
Boundary Method [N ara di ity

Dimensionality

V| Compute Gradient
Result Array Name |gradient

Faster Approximation

Compute Divergence

Divergence

Array Name Divergence
Compute Vorticity

Vorticity

Array Name Vorticity

Compute Q Criterion

Q Criterion P

Array Name Q Criterion

Contributing Cell | -t max .
Option

Replacement Value |, .
Option

Fig. 1.100: The Properties Panel for the Gradient filter applied to a uniform structured grid.

138 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

1.5.10 White-box filters

This includes the Programmable Filter and Programmable Source . For these filters/sources, you can add Python
code to do the data generation or processing. We’ll cover writing Python code for these in Section 2.5.

1.5.11 Favorite filters

If you use some filters more than others, you can organize them in the Filters > Favorites menu. This can be done from
the context menu in the pipeline or through the Filters > Manage Favorites menu as shown in Fig. 1.101. In this dialog
you can create categories and subcategories. It supports drag’n’drop operation to sort and move filters and categories.
Moreover, Favorites are highlighted in the other filter submenus on supported platforms. Favorites are saved in user
settings so they can be used in other subsequent ParaView sessions.

L] @ Ml Favorites Manager
tocailable Filters Favarites

==
Clip

¥ Custom Category

Extract Subset

Extract Edges

Streamlines 20

Extract
Extract
Extract CTH Parts

s By Region

t Add 52>

osed Points
ic Dataset Surface

Fig. 1.101: The Favorites Manager dialog. Left: the list of available filters. Right: the favorites, organized into
categories.

1.5.12 Best practices
Avoiding data explosion

The pipeline model that ParaView presents is very convenient for exploratory visualization. The loose coupling be-
tween components provides a very flexible framework for building unique visualizations, and the pipeline structure
allows you to tweak parameters quickly and easily.

The downside of this coupling is that it can have a larger memory footprint. Each stage of this pipeline maintains its
own copy of the data. Whenever possible, ParaView performs shallow copies of the data so that different stages of the
pipeline point to the same block of data in memory. However, any filter that creates new data or changes the values or
topology of the data must allocate new memory for the result. If ParaView is filtering a very large mesh, inappropriate
use of filters can quickly deplete all available memory. Therefore, when visualizing large datasets, it is important to
understand the memory requirements of filters.

Please keep in mind that the following advice is intended only for when dealing with very large amounts of data and
the remaining available memory is low. When you are not in danger of running out of memory, the following advice is
not relevant.

When dealing with structured data, it is absolutely important to know what filters will change the data to unstructured.
Unstructured data has a much higher memory footprint, per cell, than structured data because the topology must be
explicitly written out. There are many filters in ParaView that will change the topology in some way, and these filters
will write out the data as an unstructured grid, because that is the only dataset that will handle any type of topology

1.5. Filtering Data 139

ParaView Users Guide Documentation, Release 5.12.0

that is generated. The following list of filters will write out a new unstructured topology in its output that is roughly
equivalent to the input. These filters should never be used with structured data and should be used with caution on
unstructured data.

Append Datasets Extract Edges Subdivide
Append Geometry Linear Extrusion Tessellate
Clean Loop Subdivision Tetrahedralize
Clean to Grid Reflect Triangle Strips
Connectivity Rotational Extrusion Triangulate
D3 Shrink

Delaunay 2D/3D Smooth

Technically, the Ribbon and Tube filters should fall into this list. However, as they only work on 1D cells in poly data,
the input data is usually small and of little concern.

This similar set of filters also outputs unstructured grids, but also tends to reduce some of this data. Be aware though that
this data reduction is often smaller than the overhead of converting to unstructured data. Also note that the reduction
is often not well balanced. It is possible (often likely) that a single process may not lose any cells. Thus, these filters
should be used with caution on unstructured data and extreme caution on structured data.

Clip Extract Selection
Decimate Quadric Clustering
Extract Cells by Region Threshold

Similar to the items in the preceding list, Extract Subset performs data reduction on a structured dataset, but also
outputs a structured dataset. So the warning about creating new data still applies, but you do not have to worry about
converting to an unstructured grid.

This next set of filters also outputs unstructured data, but it also performs a reduction on the dimension of the data (for
example 3D to 2D), which results in a much smaller output. Thus, these filters are usually safe to use with unstructured
data and require only mild caution with structured data.

Cell Centers Mask Points

Contour Outline Curvilinear DataSet
Extract CTH Parts Slice

Extract Surface Stream Tracer

Feature Edges

The filters below do not change the connectivity of the data at all. Instead, they only add field arrays to the data. All
the existing data is shallow copied. These filters are usually safe to use on all data.

Block Ids Point Data to Cell Data
Calculator Process Ids

Cell Data to Point Data Random Vectors
Curvature Resample with Dataset
Elevation Surface Flow

Surface Normals Surface Vectors
Gradient Texture Map to. ..

Level Scalars Transform

Median Warp By Scalar

Mesh Quality Warp By Vector

140 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

This final set of filters either add no data to the output (all data of consequence is shallow copied) or the data they add is
generally independent of the size of the input. These are almost always safe to add under any circumstances (although
they may take a lot of time).

Annotate Time Outline Corners

Append Attributes Plot Global Variables Over Time
Extract Block Plot Over Line

Glyph Plot Selection Over Time

Group Datasets Probe Location

Histogram Temporal Shift Scale

Integrate Variables — Temporal Snap-to-Time-Steps
Normal Glyphs Temporal Statistics

Outline

There are a few special case filters that do not fit well into any of the previous classes. Some of the filters, currently
Temporal Interpolator andParticle Tracer, perform calculations based on how data changes over time. Thus,
these filters may need to load data for two or more instances of time, which can double or more the amount of data
needed in memory. The Temporal Cache filter will also hold data for multiple instances of time. Keep in mind that
some of the temporal filters such as the Temporal Statistics and the filters that plot over time may need to iteratively load
all data from disk. Thus, it may take an impractically long amount of time even if does not require any extra memory.

The Programmable Filter is also a special case that is impossible to classify. Since this filter does whatever it is
programmed to do, it can fall into any one of these categories.

Culling data

When dealing with large data, it is best to cull out data whenever possible and do so as early as possible. Most large data
starts as 3D geometry and the desired geometry is often a surface. As surfaces usually have a much smaller memory
footprint than the volumes that they are derived from, it is best to convert to a surface early on. Once you do that, you
can apply other filters in relative safety.

A very common visualization operation is to extract isosurfaces from a volume using the Contour filter. The Contour
filter usually outputs geometry much smaller than its input. Thus, the Contour filter should be applied early if it is
to be used at all. Be careful when setting up the parameters to the Contour filter because it still is possible for it to
generate a lot of data which can happen if you specify many isosurface values. High frequencies such as noise around
an isosurface value can also cause a large, irregular surface to form.

Another way to peer inside of a volume is to perform a Slice on it. The Slice filter will intersect a volume with a
plane and allow you to see the data in the volume where the plane intersects. If you know the relative location of an
interesting feature in your large dataset, slicing is a good way to view it.

If you have little a priori knowledge of your data and would like to explore the data without the long memory and
processing time for the full dataset, you can use the Extract Subset filter to subsample the data. The subsampled
data can be dramatically smaller than the original data and should still be well load balanced. Of course, be aware that
you may miss small features if the subsampling steps over them and that once you find a feature you should go back
and visualize it with the full dataset.

There are also several features that can pull out a subset of a volume: Clip , Threshold , Extract Selection,
and Extract Subset can all extract cells based on some criterion. Be aware, however, that the extracted cells are
almost never well balanced; expect some processes to have no cells removed. All of these filters, with the exception of
Extract Subset, will convert structured data types to unstructured grids. Therefore, they should not be used unless
the extracted cells are of at least an order of magnitude less than the source data.

When possible, replace the use of a filter that extracts 3D data with one that will extract 2D surfaces. For example,
if you are interested in a plane through the data, use the Slice filter rather than the Clip filter. If you are interested

1.5. Filtering Data 141

ParaView Users Guide Documentation, Release 5.12.0

in knowing the location of a region of cells containing a particular range of values, consider using the Contour filter
to generate surfaces at the ends of the range rather than extract all of the cells with the Threshold filter. Be aware
that substituting filters can have an effect on downstream filters. For example, running the Histogram filter after
Threshold will have an entirely different effect than running it after the roughly equivalent Contour filter.

1.6 Selecting Data

A typical visualization process has two components: setting up the visualization scene and performing the analysis of
the results to gain insight. It is not uncommon for this process to be iterative. Often, what you are looking for drives
from what filters you should use to extract the relevant information from the input datasets and what views will best
represent that data. One of the ways of evaluating the results is inspecting the data or probing into it by identifying
elements of interest. ParaView data selection mechanisms are designed specifically for such use-cases. In this chapter,
we take a closer look at various ways of selecting data in ParaView and making use of these selections for data analysis.

1.6.1 Understanding selection

Broadly speaking, selection refers to selecting elements (either cells, points, table rows, etc.) from datasets. Since data
is ingested into ParaView using readers or sources and transformed using filters, when you create a selection, you are
selecting elements from the dataset produced as the output of source, filter, or any such pipeline module.

There are many ways to create selections. Several views provide means to create specific selections. For example, in
the SpreadSheet View, which shows the data attributes as a spreadsheet, you can simply click on any row to select
that row. You can, of course, use the and CTRL (or) keys to select multiple rows, as in typical spreadsheet-based
applications.

While this seems like an exercise in futility, you are hardly achieving anything by highlighting rows in a spreadsheet.
What transforms this into a key tool is the fact that selections are linked among views (whenever possible). Linked
selection means that you select an element from a dataset in a specific view. All other views that are showing the same
dataset will also highlight the selected elements.

To make this easier, let’s try a quick demo:

Starting with a fresh paraview session, create a sample dataset using the Sources > Alphabetical > Wavelet menu, and
then click the Apply button. If you are using paraview with a default setup, that should result in a dataset outline being
shown in the default Render View . Next, let’s split the view and create SpreadSheet View . The SpreadSheet
View will automatically show the data produced by the Wavelet source. Upon closer inspection of the header in the
SpreadSheet View, we see that the view is showing the Point Data or point attributes associated with the dataset.
Now we have the same dataset, the data produced by the Wavelet source, shown in two views. Now, highlight a few
rows in the SpreadSheet View by clicking on them. As soon as you start selecting rows, the Render View will start
highlighting some points in space as tiny magenta specks (Fig. 1.102). That’s linked selection in action! What is
happening is that, as you highlight rows in the SpreadSheet View, you are creating a selection for selecting points
(since the view is showing Point Data) corresponding to the rows. Due to the linking of selections between views,
any other view that is showing the dataset (in this case, the Render View) will also highlight the selected points.

Of course, if you want to select cells instead of points, switch the SpreadSheet View to show cells by flipping the
Attribute combo-box to Cell Data and then highlight rows. The Render View will show the selected cells as a
wireframe, rather than points.

Conversely, you could have created the selection in the Render View, and the SpreadSheet View will also highlight
the selected elements. We will see how to create such selection later in this chapter.

The first thing to note is that, when you create a new selection, the existing selection is cleared. Thus, there is at most
one active selection in the application at any given time. As we shall see, certain views provide ways of expanding on
the existing selection.

142 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

r
Paraview 4.1.0-1198-g5f3413f 64-bit -o@

file Edit View Sources Filters Tools Macres Help
pEBRwaf 2?2 KA>DBMHB m 7 H
0 % 7 f2[@sowcor][|7 [owine D Esdbtsd: Feea
R EECEEE LR T
Pipeline Browser m

T
@ builtin: B R0 B R OB R Renderviewo (m]B O] x]
a

Properties

[¥ Apply. H @ Reset][lge\e(e] [,,,,,,,,

[search ... {use Esc to clear text)

= Properties (Wavelet0) A

Wwhole Extent Showing |Waveleto |VIAttribule: Point Data ‘v]Precisiun:E]
L2 Point ID | Structured Coordinates | RTData | &)
10 =1 " 3 o 89.3245 D
Center __ 0 =B a = ° 79.8115
Representation 92,5901

Coloring

[.Sahd Color ‘v” |vl
[W Show. H s Edit H 7 Rescale l
Styling

SpreadSheetviewo (m|B]0[x]

106.057

102.072

108.071

Fig. 1.102: Linked selection between views allows you to select elements in a view and view them in all other views
showing the selected data. In this demo, as we select rows in the SpreadSheet View, the corresponding points in the
3D View get highlighted.

1.6. Selecting Data 143

ParaView Users Guide Documentation, Release 5.12.0

The second thing to note is that selections are transient, i.e., they cannot be undone/redone or saved in state files
and loaded back. Nor can you apply filters or other transformation to the selections themselves. There are cases,
however, where you may want to subset your dataset using the selection defined interactively and then apply filters
and other analysis to that extracted subset. For that, there are filters available, namely Extract Selection and Plot
Selection Over Time, that can capture the active selection as filter parameters and then produce a new dataset that
consists of the selected elements.

The third thing to note is that there are different types of selections, e.g., id-based selections, where the selected elements
are identified by their indices; frustum-based selections, where the selected elements are those that intersect a frustum
defined in 3D space; query-based selections, where the selected elements are those that match the specified query string;
and so on.

1.6.2 Creating selections using views

Views provide a convenient mechanism for creating selections interactively. Views like Render View can create multi-
ple types of selection (id- or frustum-based selections for selecting points and cells), while others like the SpreadSheet
View and Line Chart View only support one type (id-based selections for points or cells).

Selecting in Render View

To create a selection in the Render View , you use the toolbar at the top of the view frame. There are two ways of
selecting cells, points or blocks in ParaView: interactive and non-interactive.

ParaView enters a non-interactive selection mode when you click one of the non-interactive selection buttons: The
type of selection you are creating will depend on the button you clicked. Once in non-interactive selection mode,
the cursor will switch to cross-hair and you can click and drag to create a selection region. Once you release the
mouse, ParaView will attempt to create a selection for any elements in the selection region and will go back to default
interaction mode.

To create a selection for cells visible in the view, use the button. For selecting visible points, use the button instead.
Visible cells (and points) are only those cells (or points) that are currently rendered on the screen. Thus, elements that
are occluded or are too small to be rendered on the screen will not be selected. If you want to select all data elements
that intersect the view frustum formed by the selection rectangle you drew on the screen, use the button (or for points).
In this case, all elements, visible or otherwise, that are within the 3D space defined by the selection frustum are selected.

To create a selection for blocks visible in the view use the button. Note that there is no frustum selection for blocks.

While most selection modes allow you to define the selection region as a rectangle, (and for points) enables you to
define the selection region as a closed polygon. However, this is limited to surface elements (i.e., no frustum-based
selection).

ParaView enters an interactive selection mode when you click on one of the interactive selection buttons: . In
interactive selection mode, you act on visible elements (cells or points). ParaView highlights elements of the dataset
as you move the cursor over them. An element can be selected by clicking on it. Clicking repeatedly on different
elements adds them to the selection. End the interactive selection mode by clicking on the interactive selection button
pushed in or by pressing the Esc key. This mode is also ended when you enter a non-interactive selection mode. Use
to select all cells with the same value in the current color array as the cell underneath the cursor (only available for
idtype arrays). Use to do the same as the previous icon for point data arrays. You can use the button to interactively
select cells of the dataset and use the button to interactively select points.

When there are selected elements, the button can be used to clear the selection.

Several of these buttons have hotkeys too, such as S for visible cell selection, D for visible points selection, F for frustum-
based cell selection, and G for frustum-based point selection. If you notice, these are keys are right next to each other
on the keyboard, starting with S, and are in the same order as the toolbar buttons themselves.

144 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

-

"
—
—

Fig. 1.103: Result of a frustum cell selection on disk_out_ref.ex2 dataset showing the frustum used to identify selected
cells. All cells that fall in that frustum or that intersect it are selected, irrespective of whether they were visible from
the view angle when the selection was made.

1.6. Selecting Data 145

ParaView Users Guide Documentation, Release 5.12.0

Did you know?

You can expand the current selection by keeping the CTRL (or) key pressed when clicking and dragging in selection
mode. paraview will then add the current selection. You can also subtract from the current selection using the , or
even toggle using CTRL (or) + . Selection modifier buttons, in the toolbar, can be used for the same effect. Add : ,
remove : , toggle : . These modifiers do not work, however, if the selected data is different from the current selection.
If so, the current selection will be cleared (as is the norm) and then the new selection will be created.

Selecting in SpreadSheet View

To create a selection in the SpreadSheet View, you simply click on the corresponding rows in the spreadsheet. You
can use the CTRL (or) and keys to add to the selection. Based on which data attribute the view is currently showing,
i.e., Point Data, Cell Data, or Row Data, the selection will select points, cells, or rows, respectively.

Selecting in Line Chart View

Line Chart View enables you to select the elements corresponding to the plotted data values. The selection inter-
action is similar to Render View . By default, you are in the interaction mode. You enter selection mode to create a
selection by using the buttons in the view toolbar for creating a rectangular selection or a polygonal selection . Once
in selection mode, you can click and drag to define the selection region. The selection is created once you release the
mouse press.

When a new selection is created, by default, it will clear any existing selection in the view. The selection modifier
buttons in the view toolbar can be used to control whether a new selection adds to selected elements , removes points
from the selected elements , or toggles it . These modifier buttons are mutually exclusive and modal, i.e., they remain
pressed until you click to unpress them or until you press another modifier button. CTRL (or) and can also be used to
add to/subtract from the selection.

1.6.3 Creating selections using the Find Data panel

Views provide mechanisms to create selections interactively. Selections in chart views and SpreadSheet View canbe
used to select elements with certain data properties, rather than spatial locations (Fig. 1.104). For a richer data-based
selection for selecting elements matching certain criteria, you can use the Find Data mechanism in paraview.

The Find Data panel can be accessed from the Edit menu, View menu, or by using the keyboard shortcut V or the
button on the Main Controls toolbar. The Find Data panel can be split into three sections, reflecting how you would
use this dialog. The Create Selection section helps you define the selection criteria. This identifies which elements,
cells or points, are to be selected. The Selected Data section shows the results from the most recent selection. They
are shown in a tabular view similar to the Spreadsheet view. Finally, the Selection Display section lets you change
how the selected elements are displayed in the active view.

You can create selections in the Find Data panel using the widgets under the Create Selection section. First,
choose the data producer. This is the source or filter from which you want to select elements from. Next choose the
element type. If you want to select cells, choose Cell, for points choose Point and so on. The next step is to define
the selection criteria. The left-most combo-box is used to select the array of interest. The available options reflect the
data array currently available on the dataset. The next combo-box is used to select the operator. Options include the
following:

* is matches a single value
e is in range matches a range of values specified by min and max

* is one of matches a list of comma-separated values

146 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

950

* ¥ ’3‘ o % = Pres (Unnamed block 1D: 1 Type: HEXB) |
>2<'§ '&x’*xh{x #k
!xxxxm&%m R R AN R Moo X > ’."Sg %
Kouois X
002- b
“w
g o
00154 R
N
0.01 %
iy
R e
i
0'005 T T T T T T T T T T T T T
250 300 350 400 450 S00 550 TOOU 650 700 750 800 850 00
'emp

28531e+02

Fig. 1.104: Selection in Line Chart View can be used to locate elements matching attribute criteria. In this visual-
ization, by generating a scatter plot plotting Pres against Temp in the disk_out_ref.ex2 dataset by selecting the top-left
corner of the Line Chart View, we can easily locate elements in the high Pres, low Temp regions in the dataset.

1.6. Selecting Data

147

ParaView Users Guide Documentation, Release 5.12.0

Find Data [£5]

== Create Selection

Selection Criteria

Data Producer | wayelet1 -
Element Type Point =
RTData v |is>= v J|150 *

Invert Selection

Selection Qualifiers

Process ID
& Find Data 5 Clear

== Selected Data (Waveletl)

Attribute: Point Data M
Point 1D Points Points_Magnitude 1*
0 112 -3 -5 -10 11.5758 1
1 114 =1, -5 -10 11.225 1
2 115 0 -5 -10 11.1803 1
& 116 1 -5 -10 11.225 1
4 117 2 -5 -10 11.3578 1
i 110 A = in 11 97TAR "l b
Freeze Extract Plot Over Time

== Selection Display
Selection Labels

7 Cell Labels - Point Labels v

Edit Label Properties
Selection Appearance

@ selection Color

Interactive Selection
@ Interactive Selection Color

Edit Label Properties

Fig. 1.105: The Find Data panel can be used to find data elements matching specific conditions. In this example, we
are selecting all Points in Wavelet] dataset where RTData is >= 150.

148 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

* is >=matches all values greater than or equal to the specified value

* is <= matches all values lesser than or equal to the specified value

* is min matches the minimum value for the array for the current time step
* is max matches the maximum value for the array for the current time step
e is <= mean matches values lesser than or equal to the mean

e is >= mean matches values greater than or equal to the mean

¢ is mean matches values equal to the mean within the specified tolerance

Based on your selection of the operator, input widgets will be shown next to this combo-box, where you enter the
corresponding values. For example, for is between, you enter the min and max values for defining the range in the
two text entry widgets.

Multiple selection criteria can be combined together. For example, you want to select all points with Temp >= 100 and
Pres <= mean, simply setup two expressions using the d;: button.

Once you are satisfied with the selection criteria, hit the Find Data button. On success, the Current Selection
spreadsheet will update to show the selected elements. Use the Attribute combo-box to change which element types
are shows in the spreadsheet.

Similar to selecting in views, once you create a selection, any view showing the selected data will also highlight the
selected elements, if possible. For example, the Render View will show a colored wireframe marking the selected
elements, SpreadSheet View will highlight the rows, and so on. The Selection Display section lets you change
how the selection is displayed in the active view. Currently, it is primarily designed for Render View. In the future,
however, it could support changing selection attributes for other views as well. The available options allow you select
the color to use to show the selected elements, as well as the data attributes to use to label the cells/points. For finer
control on the label formatting, color, font, etc., toggle the button on. That will pop up the Edit Label Properties
dialog (Fig. 1.106).

Selection Label Properties X
Opacity 1
Point Size 5
Line Width 7

Cell Label Font

Arial |18 |2||@ |*|[100 [2/|B/|[T||S

Cell Label Format
Point Label Font

Arial * (18 |2]|Q |*||100 2| BT |IS

Point Label Format

O ||| W & Cancel | ok |

Fig. 1.106: Selection Label Properties dialog for controlling selection labelling parameters.

Did you know?

1.6. Selecting Data 149

ParaView Users Guide Documentation, Release 5.12.0

Besides creating new selections, the Find Data dialog can also be used to inspect the current selection made from
outside the dialog. For example, if you select elements in the Render View using the options described in Section
Section 1.6.2, the Current Selection component in the Find Data dialog will indeed update to reflect the newly
selected elements. Furthermore, you can change its display properties and extract this selection using the extraction
buttons (which we will cover in Section Section 1.6.6).

1.6.4 Creating selections in Python

Another way to create selections is through ParaView’s Python scripting interface. Python functions exist that are
analogous to the selection operations available in the ParaView Render View and Find Data dialog. Let’s take a
look at an example.

import the selection module
from paraview.selection import *

renderViewl = GetActiveView()

Create an initial rectangular selection in the render view
SelectSurfacePoints(Rectangle=[200, 321, 600, 744], View=renderViewl)

Add points within a polygon in the active view
SelectSurfacePoints(Polygon=[180, 200, 190, 400, 322, 300], Modifier="ADD')

Subtract points with another rectangle
SelectSurfacePoints(Rectangle=[300, 400, 500, 700], Modifier='SUBTRACT')

Now extract and show the selected points into another dataset
ExtractSelection()
Show ()

Clear the selection
ClearSelection()

The script starts out by importing functions from the paraview.selection module. Next, it creates a reference to
the active render view and passes it into the selection functions. The first selection function selects points visible in the
render view within a rectangular region. The rectangle is defined by bottom left and upper right points, (200, 321) and
(600, 744), given in pixel coordinates.

The second selection is of visible points within a polygon defined by the points (180, 200), (190, 400), and (322,
300). In this call, the selection function modifies the existing selection so that newly selected points are added to the
selection. This is controlled with the Modifier named function parameter. Other options for the Modifier parameter
are 'SUBTRACT' , 'TOGGLE' , and None . When the Modifier is set to None , the previous selection gets replaced
with the new selection. The last call to SelectSurfacePoints subtracts points from the current selection, which is
the combination of the first two selections.

The last lines in this example script extract the currently selected points from the currently active source and shows
them on the screen. Lastly, the selection is cleared with the ClearSelection function.

Selections by point or cell ID numbers are also possible, as shown in this example:

from paraview.selection import *

Select cell 1 from all blocks in a multiblock dataset on process 0
(continues on next page)

150 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

SelectIDs(IDs=[0, 1], FieldType='CELL")

Add cell 3 from block 4 on process 0 and cell 5 from block 6 on process 1
to the selection
SelectCompositeDataIDs(IDs=[4, 0O, 3, 6, 1, 5], Modifier='ADD")

Finally, selections by query expressions are also possible via the Python selection API. As an example, the following
selects cells that have the maximum value for a cell variable named EQPS in the currently active source:

from paraview.selection import *

QuerySelect(QueryString="'EQPS == max(EQPS)', FieldType='CELL")

The complete list of selection functions are briefly described below. For full documentation on these functions, you
can invoke the help function on any of the functions, e.g., help(SelectSurfaceCells) .

SelectSurfacePoints - Select visible points within a rectangular or polygon region.
SelectSurfaceCells - Select visible cells within a rectangular or polygon region.
SelectSurfaceBlocks - Select visible blocks within a rectangular region.
SelectPointsThrough - Select all points within a rectangular region regardless of their visibility.
SelectCellsThrough - Select all cells within a rectangular region regardless of their visibility.
SelectGloballIDs - Select attributes by global IDs.

SelectPedigreeIDs - Select attributes by Pedigree IDs.

SelectIDs - Select attributes by attribute IDs.

SelectCompositeDatalDs - Select attributes by composite attribute IDs.
SelectHierarchicalDataIDs - Select attributes by hierarchical data IDs.

SelectThresholds - Select attributes in a source by thresholding on values in an associated array.
SelectLocation - Select points by location.

QuerySelect - Selection by query expression.

ClearSelection - Clears the selection on the source passed in as a parameter.

1.6.5 Displaying selections

The Find Data panel provides easy access to changing the Selection Display Properties for the selection in the
active view. The Current Selection section in the Find Data dialog shows the selected elements in a spreadsheet

view. You can also make a regular SpreadSheet View do the same by checking the “% button in the view toolbar to
show only selected elements.

1.6. Selecting Data 151

ParaView Users Guide Documentation, Release 5.12.0

1.6.6 Extracting selections

All the types of selections created through mechanisms discussed so far are transient and primarily used for highlighting
data. If you want to do further operations on the selected subset, such as extract the selected elements and then save the
result out as a new dataset or apply other filters only on the selected elements, then you need to use one of the extract
selection filters. The Extract Selection and Plot Selection Over Time filters fall in this category of filters.

Extract selection

Properties [=]ES]
o Apply % Delete
Search ... (use Esc to clear text)
== Properties (ExtractSelection1) 24]

Copy Active Selection

Copied Selection

Number of Selections: 2 =
Selection Expression: s0]s1

Invert Selection: No

Elements: Cell

s0)
Type: ID Selection

Composite ID Process ID Index

4 0 66

4 0 150

4 0 153

a n E1 b

Preserve Topology
4 Display =

+ View (Render View) C|E3

Fig. 1.107: Properties panel showing the properties for the Extract Selection filter.}

The Extract Selection filter is used to extract the selected elements as a new dataset for further filtering. There
are multiple ways of creating this filter. You can use the conventional method for creating filters, i.e., using the Filters
menu. When the filter is created, if there is any active selection, the filter will automatically copy that selection for
convenience. Another way to extract the active selection is using the Extract button in the Find Data panel (Fig.
1.105).

The Properties panel shows what defines the selection. You can update the selection by making a new active selection
using any of the mechanisms described eatlier in this chapter and then clicking on the Copy Active Selectionbutton
on the Properties panel for the Extract Selection filter.

By default, the filter is set up to extract the selected elements alone. This filter also supports passing the entire input
dataset through by simply marking which elements are selected. For that, check the Preserve Topology check box
on the Properties panel.

152 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Plot selection over time

ParaView 4.1.0-1317-97a74978 64-bit

= Mul
Block: 2; Cell: 607

Renderviewo [m]&]o]x
Block: 2 Cell: 618

oy yos

Statistics

Type: Multi-block Dataset

05
/
Number of Rows: 88

Properties
% Delete

Only Report Selection Statistics

%IComposite Data Set Index

% Block: 2 Cell: 607
Block: 2 Cell: 618

0G5 000100015 0X2__0ubz 0050w 0004 000| | n... [Colors | Selection Displayen]

%) EQPS (Block: 2
%) EQPS (Block: 2; ...

Fig. 1.108: Plot Selection Over Time inactioninparaview. The filter provides a convenient way to plot changes
in attributes over time for the selected set of cells or points in a temporal dataset.

Plot Selection Over Time issimilartoExtract Selectionin the sense that it too extracts the selected elements
from the input dataset. However, instead of simply extracting the result, the goal here is to plot attributes at the selected

elements over time.
Fig. 1.108 shows an example use of this filter. In this case, we wanted to see how the strain (or EQPS) cell attribute

changes over time for two specific cells that we selected in the Render View using the view-based selection mecha-
nism. The selected cells are the highlighted elements in the left view. After having selected the cells, we create the
Plot Selection Over Time filter using the Filters > Data Analysis menu. (You could also use the from the Data
Analysis toolbar.) Similar to the Extract Selection filter, when this filter is created, it copies the active selection.
You can change it afterwards using the Copy Active Selection button on the filter’s Properties panel. On hitting

Apply , paraview will show a visualization similar to the one shown here.
Instead of using the view for defining the selection, you could have used the Find Data panel. In that case, instead
of being able to plot each element over time, you will be plotting summaries for the selected subset over time. This is
essential since the selected subset can have a varying number of elements over time. The summaries include quantities
like mininum, maximum, and median of available variables. You can make the filter always produce these statics alone
(even when the selection is created by selecting specific elements in a view) by checking the Only Report Selection

Statistics property on the Properties panel for the Plot Selection Over Time filter.

153

1.6. Selecting Data

ParaView Users Guide Documentation, Release 5.12.0

1.6.7 Freezing selections

When extracting selections, you can use views or the Find Data panel to define the selection. Since the extraction
filters are indeed like any other filters in ParaView, they are re-executed any time the input dataset changes, proper-
ties on the filter change, or the current time changes. Every time the filter re-executes, it performs the selection and
extraction operations. Thus, if you created the selection using Render View to create an id-based selection, the filter
will identify which of the elements are of the requested ids and then pass those. For frustum-based selection, it will
determine what elements fall within the frustum and extract those. Similarly, with query-based selections created using
the Find Data panel, the query is re-evaluated. This can result in the selection of different elements with changes in
timestep. For example, if you are selecting the cells where the strain is maximum, the selected cell(s) will potentially
be different for each time step. Suppose you want to plot the changes in a cell that has maximum strain at the last time
step — how can we do that? The answer is using the Freeze Selection button on the Find Data panel. What that
does is convert any type of selection (frustum, query-based) to an id-based selection matching the currently selected
element ids. Now you can use this frozen, id-based selection for Extract Selection or Plot Selection Over
Time.

1.6.8 Saving and combining selections using the Selection Editor panel

Views and Find Data panel can be used to create different types of selections. To save and combine the created
selections, you can use the Selection Editor panel. This panel can be accessed from the View — Selection Editor.

Selection Editor ®

Data Producer | can.ex2

7 cell

Element Type

Expression 51|(s0"52)|s3

Name Type F
T R -
2(51 Block Selectors Selection
3/s2 Composite ID Selection
4/s3 Query Selection

3

i Activate Combined Selections

Fig. 1.109: The Selection Editor panel can be used to combine selections. In this example, we are combining
frustum, block selector, composite ID and query selections.

The Selection Editor panel allows you to save selections and combine them using a boolean expression. This panel
shows several pieces of static and editable information:

* An information-only Data Producer field is set based on the source of the active selection. If the selected
object changes, the data producer will change as well, and any saved selections from the previous data producer
will be deleted.

* An information-only Element Type field (cell or point) that is set based on the element type of the active
selection. If a selection is saved and a new active selection is made that has a different element type, ParaView
prompts for confirmation to delete all existing saved selections and changes the element type to that of the new
active selection.

154 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

* An editable Expression string that defines how to combine the saved selections into a single active selection.
This string is automatically filled while adding new selections to the saved selections, meaning that the combined
selection will be the union of all saved selections. Selections can be combined using the not (!) operator, or (|)
operator, and (&) operator, and xor (*) operator. Parentheses are available to define precedence as well.

* An editable table lists an automatically assigned name for the selection (s0, sl, s2, etc.), which is used in the
Expression property, and the type of the selection. When a selection is highlighted in the saved selections table
and ParaView’s active view is a Render View, the highlighted selection will be shown in that Render View.
When a selection is unhighlighted, it is no longer shown in the Render View.

Several buttons next to the saved selection table control the addition and removal of selections in the saved list:
¢ + (Add Active Selection) button that adds the active selection to the list of saved selections.
¢ - (Remove Selected Selection) button that removes the selected saved selection from the list of saved selections.
¢ X (Remove All Selections) button that removes all saved selections from the list of saved selections.

e Activate Combined Selections button that sets the combined saved selections as the active selection.

VETTTTTTTT
T

Fig. 1.110: The result of combining the selections as shown in Fig. 1.109.

1.7 Animation

In ParaView, you can create an animated scene where input data but also analysis and visualization parameters can
change at each timestep.

When loading a time varying dataset, ParaView automatically loads the timesteps information. Then you can choose
the current time, and the pipeline will be recomputed accordingly.

A property animation is created by recording a series of keyframes. At each keyframe, you set values for the properties
of the readers, sources, and filters that make up the visualization pipeline, as well as the position and orientation of the

1.7. Animation 155

ParaView Users Guide Documentation, Release 5.12.0

camera. Once you have chosen the parameters, you can play through the animation.
Also, the results of the animation can be saved to different format from the File: menu.
* Save Animation: images files (one image per animation frame) or movies (depends on available codecs)
* Save Geometry: all geometries in scene with ParaView’s PVD file format
» Save Extracts: save datasets and screenshots as configured in the pipeline with Extractors sources.
* Export Animated Scene: for external viewer, as vtk.js format

image files or to a movie file. The geometry rendered at each frame can also be saved in file format, which can be
loaded back into ParaView as a time varying dataset.

1.7.1 Time Manager

Time Manager is the main place where to control time. This is accessible from the View menu.

Time Manager BE
Time:|0.375 * |9 % Nb of Frames |25 % | Stride 1 - 0
oa 0.125 0.25 U.3r5 0.5 0.625 0.75 0.875 Al
| | | | | | ‘ | | | | ‘ | | ‘ | | ‘ | | | | | o
~|+/| Animations Spherel ~ | |[End The ~ | | o

+ TimeKeeper1 - Time

+/ Camera - RenderView1 | | k ®

 Spheret - PhiResqutionlw 2°| 3C|’ 42

Fig. 1.111: Time Manager.

This panel is presented as a table. Above the table are controls that administer how time progresses in the animation.

Within the table, the tracks are organized into two sections. The first displays information about time varying data
present in the pipeline. Each row match one temporal pipeline source, and its associated timesteps. The first row in the
table, simply labeled Time, shows the scene times, i.e. the times that will be used when playing the scene. That can be
a combination of pipeline source data times. The current displayed time is indicated both in the Time field at the top
and with a thick, vertical line within the table.

Note that both the first and the last time labels of the timeline have special background. Click on them to enter Start
Time and End Time entry-boxes and configure the start and end times for the animation. By default, when you load
time varying datasets, the start and end times are automatically adjusted to cover the entire time range present in the
data. The lock check-buttons just next to the Start Time and End Time labels will prevent this from happening, so
that you can ensure that your animation covers a particular time domain of your choosing.

In the second part come the animation tracks. The Animations row contains widget to creates animations.

~ 4/ Animations Sphere1 v ||[EndPhi ~ | | dp

v/ Camera - RenderView1

| |
10 20

v/ Spheret - PhiRes:::Iu‘fion| |

Fig. 1.112: Animation Tracks.

You choose a data source and then a particular property of the data source in the bottom row. To create an animation
track with keyframes for that property, click the + on the right-hand side; this will create a new track. In the figure,

156 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

tracks already exist for SphereSourcel’s Phi Resolution property and for the camera’s position. To delete a track,
press the X button. You can temporarily disable a track by unchecking the check box on the left of the track. To
enter values for the property, double-click within the white area to the right of the track name. This will bring up the
Animation Keyframes dialog. Double-clicking in the camera entry brings up a dialog like the one in Fig. 1.113.

Editing Camera

Time Camera Values New
10 Position ... Delete
2/0.25 Position ... Delete All

Use current Camera
41 Position ...
v/ Spline Interpolation

@OK || X Cancel Apply

Fig. 1.113: Editing the camera track.

From the Animation Keyframes dialog, you can press New to create new keyframes. You can also press Delete or
Delete All to delete some or all of the keyframes. Clicking New will add a new row to the table. In any row, you can
click within the Time column to choose a particular time for the keyframe, and you can click in the right-hand column
to enter values for the parameter. The exact user interface components that let you set values for the property at the
keyframe time vary. When available, you can change the interpolation between two keyframes by double-clicking on
the central interpolation column.

Within the tracks of the Time Manager , the place in time where each keyframe occurs is shown as a vertical line.
The values chosen for the property at that time and the interpolation function used between that value and the next
are shown as text, when appropriate. In the previous figure, for example, the sphere resolution begins at 10 and then
changes to 20, varying by linear interpolation between them. The camera values are too lengthy to show as text so they
are not displayed in the track, but we can easily see that there are four keyframes spaced throughout the animation. The
vertical lines in the tracks themselves may be dragged, so you can easily adjust the time at which each keyframe occurs.

Did you know?

You can quickly add a simple animation track and edit the keyframe without using the Time Manager by
using Animation Shortcut. First, enable Show Animation Shortcut from Settings dialog (on the
General tab, search for the option by name or switch to advanced view). Then, several of the animatable
properties on the Properties panel will have a icon. Click this icon to add a new animation track for
this property and edit it.

1.7. Animation 157

ParaView Users Guide Documentation, Release 5.12.0

= Properties (Shrinkl) (3 0 @ d

Shrink Factor s 0.5

1.7.2 Scene time configuration

Time controls

The Time Manager has a header bar that lets you control some properties of the animation itself, as you can see in
Fig. 1.114.

Time Manager X
Time:|0 v |0 “ Nb of Frames 10 5 | Stride 1 -

Fig. 1.114: Time Manager Widgets.

The Time entry-box shows the current animation time, which is the same as shown by a vertical marker in this view.
You can change the current animation time by either entering a value in this box, if available, or by dragging the vertical
marker. The second entry-box is the timestep index. You can also edit it.

If the scene does not use any pipeline sources to get its list of times (see below), you can also edit Number of frames
to set the total number of frames for the scene.

The Stride parameter, available in advanced mode, allows to jump by this number of timesteps when navigating
through times.

Time list

ParaView supports two modes to configure scene times. The time list can either come from the data themself or it can
be generated. We call them Snap to Timestep and Sequence respectively.

Time Manager @@
Time:|0.000181818 « | 1 % Nb of Frames | 12 - L1
- Time 0a 0.000363636 0.000727273 0.00109091 0.00145455 agmozy
| | I | | | 1 | I 1 o

can ox2 A T T

|

I
| (Y | | | | | |
I L I I I I I I

TemporalShiftScale1 | | I | | | | |
+/| Animations Spheret ~ | EndPhi v o

Fig. 1.115: Time Manager Sequence.

In Sequence mode, the number of frames is controlled by the No. Frames spinbox. Times are evenly spaced between
Start and End time. This is the preferred mode when working with non-temporal data. This is activated when none of
the Time tracks are enabled, i.e. the checkbox left to the Time label of first track is disabled.

In the figure, the main timeline has 12 ticks. They do not match the times from the data, as expected for a sequence.

In Snap To TimeSteps mode, the number of frames in the animation is determined by the number of time values
in the dataset being animated and thus cannot be changed. This is the animation mode used by default by ParaView
when a dataset with time values is loaded. Then playing the animation means playing through the time values of the
dataset one after the other. This is enabled when at least one Time track is checked.

In the figure, only can.ex2 is checked so the scene knows only about its timesteps: the main timeline has same ticks
as the can. ex2 track.

158 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Time Manager BE
Time: 0.000100074 ~ 1 < |maxis 43 o
I Time 0 & 0.000299964 0.000700049 0.00109998 0.00150004 ojgoo2y ..

| T T T [Y A N (N S SO SO R
V| can.ex2 I LA B s
TemporalShiftScale} I Y T N S S
+/ Animations TemporalShiftScalel ~ | |Maximu ~ | o

Fig. 1.116: Time Manager Snap to timesteps.

Did you know?

You can change the precision (number of significant digits) displayed by the animation clock by changing
the Animation Time Precision value in the Settings under the General tab.

General = Camera Render View Color Arrays Color Palette

[time pre |3

Animation

Animation Time Precision: Set the number of significant digits displayed for the
time in the animation toolbar.

17

1.7.3 Animating time-varying data

We saw that the main scene of ParaView can know about the times available from a pipeline source, such as a reader
that produces time varying data. Then a current time is set at the scene level, and by default the pipeline is updated to
the relevant time.

But what happen when asking for a time that does not exist in the data? How to do some properties animation at a fixed
data time? Can I animate the time itself?

ParaView offers one answer to all those questions: the Time Keeper. This is an animation track, visible only in
advanced mode. The Time Keeper maps the scene time to a new time used to update the pipeline. The default
mapping simply maps the scene time to itself.

But you can uncouple the data time from the animation time so that you can create complex animations.

If you double-click in the TimeKeeper - Time track, the Animation Keyframes dialog, an example of which is
shown in Fig. 1.117, appears. In this dialog, you can make data time progress in three fundamentally different ways.
If the Animation Time radio-button is selected, the data time will be tied to and scaled with the animation time so
that, as the animation progresses, you will see the data evolve naturally. If you want to ignore the time varying nature
of the data, you can select Constant Time instead. In this case, you choose a particular time value at which the data
will be displayed for the duration of the animation. Finally, you can select the Variable Time radio-button to have
full control over data time and to control it as you do any other animatable property in the visualization pipeline. In the
example shown in Fig. 1.117, time is made to progress forward for the first 15 frames of the animation, backward for
the next 30, and forward for the final 15.

1.7. Animation 159

ParaView Users Guide Documentation, Release 5.12.0

it Animation Keyframes b4

Animation Time

Constant Time:

® Variable Time: Time interpolation Value MNew
1_0 s Ramp 0 Delete
; 15 # Ramp 0.00105 Delete All
: ¢ HRamp 0.001

45
Q-

=

Fig. 1.117: Controlling Data Time with keyframes.

1.7.4 Animating the camera

Just like you can change parameters on sources and filters in an animation, you can also change the camera parameters.
You can add animation tracks to animate the camera for all the 3D render views in the setup separately. To add a
camera animation track for a view, with the view selected, choose Camera from the first drop-down menu. The second
drop-down list allows you to choose how to animate the camera. Then click on the + button. There are three possible
options, each of which provides different mechanisms to specify the keyframes. It’s not possible to change the mode
after the animation track has been added, but you can simply delete the track and create a new one.

Follow data

In this mode, the camera focal point and position is changed to keep the data centered in the view. It does not change
the camera zoom level, however.

160 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Interpolate cameras

In this mode, you specify camera position, focal point, view angle, and up direction at each keyframe. The animation
player interpolates between these specified locations. As with other parameters, to edit the keyframes, double-click on
the track. It is also possible to capture the current location as a keyframe by using the Use Current button.

Editing Camera

Time Camera Values New
10 Position ... Delete
2/0.25 Position ... Delete All

Use current Camera
41 Position ...
v/ Spline Interpolation

@OK | X Cancel « Apply

Fig. 1.118: Setting camera animation parameters.

It can be quite challenging to add enough keyframes correctly to ensure that the animation results in a smooth visual-
ization using this mode. However, it is the preferred mode if you want fine control on a few cameras.

Follow path

In this mode, you get the opportunity to specify the path taken by the camera position and the camera focal point. By
default, the path is set up to orbit around the selected objects. You can then edit the keyframe to change the paths. This
is the preferred mode if you want to control the global motion more than exact points of view.

Fig. 1.119 shows the dialog for editing these paths for a keyframe. When Camera Position or Camera Focus is selected,
a widget is shown in the 3D view that can be used to set the path. Use CTRL + Left Click to insert new control points,
and + Left Click to remove control points. You can also toggle when the path should be closed or not.

This mode makes it possible to quickly create a camera animation in which the camera revolves around objects of
interest. Clicking on the Orbit button will pop up a dialog where you can edit the orbit parameters such as the center
of revolution, the normal for the plane of revolution, and the origin (i.e., a point on the plane where the revolution
begins). By default, the Center is the center of the bounds of the selected objects, the Normal is the current up
direction used by the camera, while the origin is the current camera position.

1.7. Animation 161

ParaView Users Guide Documentation, Release 5.12.0

ew [Layout #1 @ +

5 @ o @ (e =] 2] A @@ WYY EE R] RenderViewl 1) | =

1
B®

Jelete | 2

r text) |83
@ -
6

Editing Camera
~ Position Gontrol Points =
Time Camera Values New

Camera Focus 0
+/| Show Spline
X Y z ~llofe 21 Delete All

10 0 25 -
MES

T

lto snap the selected point to closest mesh point. Create Orbit
[Use 1/ Ctrl+1 for first point and 2 / Ctrl+2 for the
last point. L
+ Closed

Pok X Cancel | Apply

Fig. 1.119: Creating a camera path.

Create Orbit :

~ Orbit Parameters

Center |0.219767| | |3.76082 ||-5.86096 |

Normal [0.0299978 |[-0.320018 |[-0.946936 |

Origin |-3.54071 |[52.8514 | [-21.7394 |

Reset Bounds | | ® Cancel ‘ | o/ OK

Fig. 1.120: Creating a camera orbit.

162 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

1.7.5 Playing an animation

Once you have designed your animation, you can play through it with the VCR controls toolbar seen in Fig. 1.15.

d <l <1 P> [Pl > :Timejpooo29996s g 3 ~|maxisaa

Fig. 1.121: VCR Controls and Current Time Controls toolbars in paraview.
Note that the frames are rendered as fast as possible. Thus, the viewing frame rate depends on the time needed to
generate and render each frame.

When you play the animation, you can cache the geometric output of the visualization pipeline in memory. When you
replay the animation, playback will be much faster because very little computation must be done to generate the images.

1.7.6 Explore an animation using Python

The following Python commands allow you to get and explore an animation scene.

Just like you can navigate through timesteps in paraview’s user interface, you can use Python commands to do the
same. These commands are available through an animation scene object, retrieved with:

[>>> scene = GetAnimationScene()

This object has several methods available to change which animation timestep is shown:

>>> scene.GoToFirst()
>>> scene.GoToLast()
>>> scene.GoToNext()
>>> scene.GoToPrevious()

Additional methods are available to start and stop playback of the animation:

Play() plays the animation from current timestep to the last. Reverse() plays the animation in reverse from the current
timestep to the first.

Finally, you can access the available times in all loaded datasets using

The times are returned in a Python list.

1.8 Saving Results

In this chapter, we will introduce various ways of saving visualization results in ParaView. Results generated through-
out the visualization process not only include the images and the rendering results, but also include the datasets gen-
erated by filters, the scene representations that will be imported into other rendering applications, and the movies
generated from animations.

1.8. Saving Results 163

ParaView Users Guide Documentation, Release 5.12.0

1.8.1 Saving datasets

You can save the dataset produced by any pipeline module in ParaView, including sources, readers, and filters. To
save the dataset in paraview, begin by selecting the pipeline module in the Pipeline Browser to make it the active
source. For modules with multiple output ports, select the output port producing the dataset of interest. To save the
dataset, use the File > Save Data menu or the button in the Main Controls toolbar. You can also use the keyboard
shortcut CTRL + S (or + S). The Save File dialog (Fig. 1.122) will allow you to select the filename and the file format.
The available list of file formats depends on the type of the dataset you are trying to save.

Save File: 3,

Look in: _,fhome,futkarsh,fh(itware{Pa.raVieWBfParaViewDatafDataf (] € A& |
ks Home Filename I;
il adaptive-cosmo
W amr
il ANALYZE

il dualSphereAnimation
i ensemble-wavelet

il EnSight
il ExRestarts
il FileSeries
i GMV
il tmp il headsq
il Data il lron Xdmf
il Scripts il Prism
il VTK Output &l RodPlate
il bake_releaseak il SciberQuestToolKit

-
-

& shuttle-surf

File name: |sample

1] «[») Files of type: | CSV File(*.csv) '~/ cancel

Fig. 1.122: Save File dialog in paraview.

On accepting a filename and file format to use, paraview may show the Configure Writer dialog (Fig. 1.123). This
dialog allows you to further customize the writing process. The properties shown in this dialog depend on the selected
file format and range from enabling you to Write All Time Steps, to selecting the attributes to write in the output
file.

In pvpython too, you can save the datasets as follows:

Saving the data using the default properties for
the used writer, if any.
>>> SaveData("sample.csv'", source)

the second argument is optional, and refers to the pipeline module
to write the data from. If none is specified the active source is used.

To pass parameters to configure the writer

>>> SaveData("sample.csv'", source,
Precision=2,
FieldAssociation="'Cells"')

pvpython will pick a writer based on the file extension and the dataset type selected for writing, similar to what it does
in paraview. Admittedly, it can be tricky to figure out what options are available for the writer. The best way is to
use the Python tracing capabilities in paraview and to use the generated sample script as a reference (Section 1.1.6).
Make sure you use a similar type of dataset and the same file format as you want to use in your Python script, when

164 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Configure Writer o

Configure Writer Properties

Precision l 5
Use Scientific Notation

Write All Time Steps
Field Association [pgints |T]

f!gancelH o/ OK |

Fig. 1.123: Configure Writer dialog in paraview shown when saving a dataset as a csv file.

1.8. Saving Results 165

ParaView Users Guide Documentation, Release 5.12.0

tracing, to avoid runtime issues.

1.8.2 Saving rendered results
Views that render results (this includes almost all of the views, except SpreadSheet View) support saving images

(or screenshots) in one of the standard image formats (PNG, JPEG, TIFF, BMP, PPM). Certain views also support
exportings the results in several formats such as PDF, X3D, and VRML.

Saving screenshots

To save the render image from a view in paraview, use the File > Save Screenshot menu option. When selected, a
file dialog will appear where you can select the file path and format to which the screenshot should be saved. After
selecting the image file, the Save Screenshot Options dialog (Fig. 1.124) will be shown. This dialog allows you

to select various parameters that controls what image is saved out and how.

[] & Save Screenshot Options

Search ... (use Esc to clear text)

Size and Scaling

Image Resolution 2190 x 682 (@ = |8|C
Font Scaling Scale fonts proportionally ﬂ
Coloring

Override Color

Palette Mo change ﬂ
Stereo Mode Mo change ﬂ

Transparent Background

Image Options

Farmat -
Compression Level 5 ﬂ
1 Application ParaView o

4
Save In Background
Metadata
Embed ParaView State
o X concel (KT

Fig. 1.124: The Save Screenshot Options dialog, which is used to customize saving screenshots in paraview.

166 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

If your visualization setup only has one view the active tab, then you’ll be presented with options shown in (Fig. 1.124).
The available options are as follows.

Image Resolution : This is the target image resolution in pixels. By default, it is set to the current view
dimensions. You can change it as needed. If the resolution larger than the current resolution, then ParaView will
use tiling to render the full image in multiple stages. For reliable results, you may want to present the current
aspect ratio. You can use Tools > Lock View Size Custom to lock the view size to a suitable aspect ratio.

Font Scaling: When aresolution larger than the current resolution is specified, this allows you to control how
the fonts are to be scaled. Default Scale fonts proportionally tries to achieve WYSIWYG as long as the
aspect ratio is maintained. This is suitable for saving images targeted for higher DPI (or PPI) display than your
screen. Do not scale fonts may be used to avoid font scaling and keep their size in pixels the same as what
is currently on the screen. This is suitable for saving images targeted for a larger display with the same pixel
resolution.

Override Color Palette : Optionally change the color palette just for saving the screenshot using this drop-
down.

Stereo Mode : This option lets you save the image using one of the supported stereo modes.

Transparent Background : If the file format supports it, you can check this option to save the images with a
transparent background rather than the current background color.

Format : This shows the file format selected in the file save dialog.

For formats that have different options like compression levels, format-specific options are presented in the Save
Screenshot Options dialog. The PNG format has a Compression Level option that ranges from O (no com-
pression) to 9 (maximum compression). The JPEG format options are Quality , which ranges from 0 to 100, and
Progressive , which enables saving the file as a progressive JPEG. The TIFF file format has a Compression option
with possible values None , PackBits , and Deflate . The BMP file format has no options.

If the active tab has more than one view, then the Save Screenshot Options dialog has a few more options as shown
in Fig. 1.125.

Size and Scaling
Save All Views

Image Resolution 2171 x 682 D P x|8|C
Font Scaling Scale fonts proportionally ﬂ

Separator Options
Separator Width — 1

(_) Separator Color

Fig. 1.125: Extra options in Save Screenshot Options dialog available when the active tab has more than 1 view.

Save All Views : Check this to save all the views in the active tab laid out exactly as in the UL If unchecked,
only the active view will be saved.

Separator Options : These control the separator drawn between the views in the generated image. You can
specify the Separator Width in approximate pixels as well as the Separator Color.

To save a screenshot in pvpython, you use SaveScreenshot .

1.8. Saving Results 167

ParaView Users Guide Documentation, Release 5.12.0

Save a screenshot from a specific view.
>>> myview = GetActiveView()
>>> SaveScreenshot("aview.png", myview)

Save all views in a tab
>>> layout = GetLayout()
>>> SaveScreenshot("allviews.png", layout)

To save a specific target resolution, rather than using the
the current view (or layout) size, and override the color palette.
>>> SaveScreenshot("aviewResolution.png", myview,
ImageResolution=[1500, 1500],
OverrideColorPalette="Black Background™)

As always, you can use Python tracing in paraview to trace the exact form of the method to use to save a specific
screenshot image.

Exporting scenes

When available, you can export a visualization in a view in several of the supported formats using the File > Export
Scene. .. menu option in paraview. For a Render View (or similar), the available formats include Cinema Database,
EPS, PDF, PS, SVG, POV, VRML, WebGL, X3D, and X3DB. On selecting a file as which to export, paraview may
pop up an Export Options dialog that allows you to set up parameters for the exporter, similar to saving datasets (
Section 1.8.1).

In addition, from pvpython, exporting takes the following form (again, just use Python trace to figure out the proper
form — that’s the easiest way).

>>> myview = GetActiveView()

>>> ExportView('/tmp/sample.svg', view=myview,
Plottitle="ParaView GL2PS Export',
Compressoutputfile=1)

the arguments after 'view' depend on the exporter selected.

1.8.3 Saving animation

To save an animation as a series of images or a video file, you use the File > Save Animation menu option. This raises
a file save dialog where you choose where to save the file and which format to use. The available file formats include
AVI (on Windows and Linux), MP4 (on Windows only), and Ogg video formats, as well as image formats such PNG,
JPEG, and TIFF. If saving an animation as image frames, ParaView will generate a series of image files sequentially
numbered using the frame number as a suffix to the specified filename.

After selecting the file and format, the Save Animation Options dialog (Fig. 1.126) is displayed. This dialog is
nearly a clone of the Save Screenshot Options dialog (Fig. 1.124), including, optionally, the extra multiview op-
tions from Fig. 1.125, with additional format-specific compression options and a few animation-specific parameters.
These are as follows:

e Frame Rate: When saving the animation as a video file (AVI or Ogg) rather than a series of images, this lets
you specify the frame rate for the generated video. It has no effect when saving as a series of images.

e Frame Stride: Defines how many timesteps to jump forward after recording a screenshot of the current
timestep.

168 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

® @9 Save Animation Options

bea-'ch ... (use Esc to clear text)

Size and Scaling
Save All Views

Image Resolution 1086 x 682 o) || x| &

B o

Font Scaling Scale fonts proportionally

Separator Options

Separator Width

Coloring

Override Color =
No ch

Palette QRETRE

Stereo Mode Mo change

Transparent Background

File Options

\

Format 4

Compression

o)

Quality 2 (best quality, larger file)

Animation Options

Frame Rate 1
Frame Stride 1
Frame Window 0 43

e W X canca

Fig. 1.126: The Save Animation Options dialog in paraview, which is used to customize saving of animation.

1.8. Saving Results 169

ParaView Users Guide Documentation, Release 5.12.0

e Frame Window: If you didn’t want to save out the full animation, instead limit to a specific window, you can
use this to specify the range of frames to save. If you are generating a animation from a temporal dataset with
timesteps, the frame generally corresponds to the timestep number.

To save animations in pvpython, you use SaveAnimation . The arguments to this function are same as the
SaveScreenshot with additional parameters for the animation specific options.

>>> SaveAnimation('animation.avi', GetActiveView(),
FrameWindow = [1, 100],
FrameRate = 1)

1.8.4 Saving state

Besides saving the results produced by your visualization setup, you can save the state of the visualization pipeline itself,
including all the pipeline modules, views, their layout, and their properties. This is referred to as the Application
State, or just State . In paraview, you can save the state using the File > Save State... menu option. Conversely,
to load a saved state file, you can use File > Load State. ...

There are two types of state files that you can save in paraview: ParaView state file (*.pvsm) and Python state file
(*.py). The PVSM files are XML-based text files that are human and machine readable, although not necessarily
human friendly for a novice user. However, if you don’t plan to read and make sense of the state files, PVSM is the
most robust and reliable way to save the application state. For those who want to save the state and then modify it
manually, using Python state files may be better, as using Python trace simply traces the actions that you perform in the
UI as a Python script. Python state files, on the other hand, save the entire current state of the application as a Python
script that you can use in paraview or the Python Shell .

Save State File

Look in: fhomej/utkarsh/Kitware/ParaView3/ParaViewBin/

il Home Filename

il Applications

™ bin

il CMakeFiles

il CommandLineExecutables
il CoProcessing

@ ExternalData

il lib

&l ParaViewCore

i Plugins

i tmp . Qt

il Scripts il Testing

il VTK_Output il ThirdParty

il Data il Utilities

il datasets B VTK |~
i Web =

File name:

Files of type: | ParaView state file (*.pvsm) f- Cancel

ParaView state file (*.pvsm) {}

Python state file (*.py)

All files (*)

Fig. 1.127: The Save State File dialog in paraview.

To load a state file, you use the File > Load State... menu. Note that loading a state file will affect the current
visualization state.

If you load a PVSM file this way you will be asked where to search for the data files. There are three available options:

170 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

[Load State Options + X |

Iﬁﬁ:%‘;ttiaéﬁsData Use File Names From State

Search files under specified directory

Choose File Names

& @ Cancel $POK

Fig. 1.128: The Load State Options dialog in paraview showing the options for where to find data files.

Use File Names From State, Search files under specified directory and Choose File Names . If
you select Use File Names From State then ParaView will look for the data at the absolute paths saved in the
state file. If you select Search files under specified directory then you will see an option to browse for a
directory that ParaView will search for the files before looking for them in the absolute path in the state file. This
defaults to the location of the state file to make sharing state files between computers easier. If you select Choose
File Names then you will be given a list of file names in the state file and can override each one individually.

You can save/load the PVSM state file in pvpython as follows:

>>> from paraview.simple import *

Save the PVSM state file. Currently, this doesn't support
saving Python state files.
>>> SaveState('sample.pvsm™)

To load a PVSM state file.
>>> LoadState("sample.pvsm')

To replace all data files used by state with those under a specific directory, you use the following form:

>>> LoadState("sample.pvsm",
data_directory="[directory path]",

optionally, restrict to specified directory
restrict_to_data_directory=True)

The function signature can become a little more complex if you want to explicitly override filenames used in the state
file. It may be easier to use the Python trace capabilities to generate the function call for specific state files. It takes the
following form:

1.8. Saving Results 171

ParaView Users Guide Documentation, Release 5.12.0

= Load State Options + X |

Load State Data
File Options

Data Directory | jhome/shawn/data/pvsm

Search files under specified directory -

& @ Cancel | $POK |

Fig. 1.129: The Load State Options dialog in paraview showing the Search files under specified
directory option.

>>> LoadState('sample.pvsm",
filenames = [

a “dict’ object for each reader in statefile to update.

{
"name": "[reader name as shown in the pipeline browser]",
if multiple readers have the same name, 'id' may be used
instead of 'name' where the value is "id" used in the
state file for this reader.
filename properties and their overridden values for this
reader, for example:
"FileName" : "foo.vtk",

b

multiple such “dict’'s can be specified.

D

here's an example
>>> LoadState(statefile,
filenames=[
{
'name' : 'can.ex2',
'FileName' : data_dir + 'can.ex2',

},

(continues on next page)

172 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

{
'name' : 'dataset',
'FileName' : data_dir + 'disk_out_ref.ex2',
i
{
'name' : 'timeseries',
'FileName' : [data_dir + 'dualSphereAnimation/dualSphereAnimation_
—POOTO000.vtp',
data_dir + 'dualSphereAnimation/dualSphereAnimation_
—POOTO0O01.vtp',
data_dir + 'dualSphereAnimation/dualSphereAnimation_
—POOTO002.vtp',
data_dir + 'dualSphereAnimation/dualSphereAnimation_
—POOTO003.vtp"',
data_dir + 'dualSphereAnimation/dualSphereAnimation_
—POOTO004.vtp',
data_dir + 'dualSphereAnimation/dualSphereAnimation_
—POOTO0O05.vtp',
data_dir + 'dualSphereAnimation/dualSphereAnimation_
—POOTO006.vtp',
data_dir + 'dualSphereAnimation/dualSphereAnimation_
—POOTO007.vtp',
data_dir + 'dualSphereAnimation/dualSphereAnimation_
—POOTO008.vtp',
data_dir + 'dualSphereAnimation/dualSphereAnimation_
—POOTO009.vtp',
data_dir + 'dualSphereAnimation/dualSphereAnimation_
—POOTO010.vtp']
i

D

Did you know? :class: tip

Not all user interface settings are saved in ParaView state files. For example, the Show Plane and Show Outline
and Intersection Edges settings in the Plane widget in the S1ice and Clip filters are not saved because they are
temporary interface state, not part of the data pipeline or display properties. end{didyouknow }

1.8.5 Extractors

Section 1.8.1 and Section 1.8.2 are two ways of saving datasets and images using actions, i.e., you click a button (or
in Python, invoke a function) and the results are saved out immediately. If, for example, you now want to generate the
results for another timestep, you have to repeat all the actions. One way to avoid this is to put together a Python script
to generate the data and image files and then use that as a macro. An easier way is to use extractors . Extractors
are a type of pipeline module, similar to sources and filters, but behave more like writers. Similar to filters, they have
inputs. Unlike sources or filters, however, they produce no output that can be consumed by another pipeline module.
Instead, when activated, they generate files — which we call extracts.

Since they are just another pipeline module, you use similar mechanisms as sources and filters for creating and config-
uring these. You use the Extractors menu to create them. The Pipeline Browser shows all the extractors present in
the visualization. You select one of them by clicking on it in the Pipeline Browser at which point the Properties
panel will update to show parameters on the selected extractor.

1.8. Saving Results 173

ParaView Users Guide Documentation, Release 5.12.0

There are two types of extractors: data extractors and image extractors. The former generate files from datasets produced
by sources and filters, while the latter save out rendering results from views. When created, a data extractor by default
uses the active source as the input (similar to filters) which an image extractor uses the active view instead.

Extractor Properties

Enable
Trigger Time Step H
Start Time Step

End Time Step

Frequency 1
Writer PNG il
File Name ewl_{timestep:06dH{camera}l.png

Size and Scaling
Image Resolution 2191x 682 @ & | x | £ i

Miscellaneous

Reset Display

Camera Mode Static ﬁ

Fig. 1.130: Properties of an image extractor for PNG files.

You use the Properties panel view and change extractor properties. The available properties can be grouped into
two major groups: first are Trigger properties which are common to all extractors, and the second are the Writer
properties which are parameters specific to type of writer the extractor uses.

Trigger properties define when the extractor is activated i.e. under what conditions does the extractor produce extracts.
Currently, we support time-based controls. You can select the Start Time Step, End Time Step orthe Frequency
at which to generate the results. Frequency is the number of timesteps per activation. To write every other timestep,
set the Frequency to 2, to write every 3rd timestep, set it to 3, and so on.

Wiriter properties are specific to the writer. For data extractors, these will be similar to the writer properties shown in
the Configure Writer dialog for the writer described in Section Section 1.8.1. For image extractors, they are similar
to the Save Screenshot Options dialog described in Section Section 1.8.2. The Writer properties also lets you set
aFile Name . This is the file name to use to save the extracts. Since extractors are designed to generate a new extract
every time they are activated, the File Name supports patterns that let you make the filename unique per activation.
{timestep} or {time} in the filename are replaced by the timestep index and the time value for each activation. You
add leading zeros (or other prefixes) to the numbers using a form such as {timestep:06d}. There the timestep will be
padded with zeros if the number of digits is less than 6. You should not use absolute paths for specifying the filenames
here. We will see how to select prefix to store these extracts under in the next section.

174 Chapter 1. ParaView User’s Guide

ParaView Users Guide Documentation, Release 5.12.0

Saving Extracts

Y
-

Save Extracts Options

Extracts Output

. tracts
Directory S

Generate Cinema Specification
Animation Options
Frame Stride 1
Frame Window 0 43

o - & Cancel OK

Fig. 1.131: Save Extracts Options dialog shown on File > Save Extracts. ...

Once the extractors have been setup, you can trigger the saving of extract using File > Save Extracts. ... This will pop up
the Save Extract Options dialog which lets you configure the extract generation. Extracts Output Directory
specifies the root directories under which all extracts are saved. Check Generate Cinema Specification to gen-
erate a data.csv file under the chosen extracts output directory that summarizes the generated extracts. This can be
then used with viewers provided by the Cinema Science project to explore the generated extracts. Frame Stride and
Frame Window control the timesteps for which extracts are generated.

Hit Ok and ParaView will animate through all timesteps (similar to using the VCR Controls), activating extractors
based on their trigger criteria and then generating extracts. On successful completion you should have files under the
chosen root directories.

In addition to generating extracts using the GUI, you can use pvpython or pvbatch to generate extract offline. Thus
is especially handy for HPC use-cases; you can setup your state using an interactive session and once done save out the
state and schedule a non-interactive job for the potentially time-consuming extract generation stage. To do so, setup
your visualization pipeline including the extractors as normal. Then, instead of using Save Extracts, use File >
Save State... and save out a Python state file. The Python State Options dialog has a section similar to Save
Extracts Options dialog for choosing Extracts Output Directory and Generate Cinema Specification.
Click Ok to save the Python script. The Python script has a section near the end of the end as follows:

if _name__ == '__main__
generate extracts
SaveExtracts(ExtractsOutputDirectory="extracts"')

This is what causes the Python script to save the extracts when the script is executed using pvbatch or pvpython.

1.8. Saving Results 175

https://cinemascience.github.io/

ParaView Users Guide Documentation, Release 5.12.0

[] @ Python State Options

General Options
Properties To Trace On Create: Select which properties to save in state

any *modified* properties

Skip Rendering Components: Skip rendering components such as views,
representations, etc,

Skip Hidden Display Properties: Skip displays properties/representations for
elements hidden in a view.

Save Extracts Options
Extracts Output Directory: Choose directory under which to save all extracts.
extracts

(s - & Cancel ﬁ

Fig. 1.132: Python State Options dialog shown when saving a Python state file using File > Save State.

176 Chapter 1. ParaView User’s Guide

CHAPTER
TWO

PARAVIEW REFERENCE MANUAL

2.1 Properties Panel

The Properties panel is perhaps the most often used panel in paraview. This is the panel you would use to change
properties on modules in the visualization pipeline, including sources and filters, to control how they are displayed
in views using the Display properties, and to customize the view itself. In this chapter, we take a closer look at the
Properties panel to understand how it works.

2.1.1 Anatomy of the Properties panel
Before we start dissecting the Properties , remember that the Properties panel works on active objects, i.e., it

shows the properties for the active source and active view, as well as the display properties, if any, for active source in
the active view.

Buttons

Fig. 2.1 shows the various parts of the Properties panel. At the top is the group of buttons that let you accept, reject
your changes to the panel or Delete the active source.

Did you know?

You can delete multiple sources by selecting them using the CTRL (or) key when selecting in the Pipeline Browser
and then clicking on the Delete button. Sometimes, the Delete button may be disabled. That happens when the
selected source(s) have other filters connected to them. You will need to delete those filters first.

Search box

The Search box allows you to search for a property by using the name or the label for the property. Simply start typing
text in the Search box, and the panel will update to show widgets for the properties matching the text.

The Properties panel has two modes that control the verbosity of the panel: default and advanced. In the default
mode, a smaller subset of the available properties is shown. These are generally the frequently used properties for the
pipeline modules. In advanced mode, you can see all the available properties. You can toggle between default and
advanced modes using the button next the Search box.

When you start searching for a property by typing text in the Search box, irrespective of the current mode of the panel
(i.e., default or advanced), all properties that match the search text will be shown.

177

ParaView Users Guide Documentation, Release 5.12.0

a]] I Proportios
Apply 9 Reset & Delate T
EBearch [Uusd Esc 1o clear (ext) 5.
= Properties (Wavelet1) 3 B 2 W

Whole Extent _qip 10

=10 10

-10 10
Center 0 4] 0

= Display (UniformGridRepresentation) 9 0 & |4

Representation Qutline E

Coloring
@ Solid Color E =
i Edit il £ i W = &

Styling
Opacity 1

Lighting
Specular o

OSPRay
O5PRay Use Scale Array

Data Axes Grid Edit
kastimurm Mumber
Of Labels L
= View [Render View) 3 B o W
Axes Grid Edit

Center Axes Visibility
Orientation Axes

Orientation Axes Visibility

Hidden Line Removal

Camera Parallel Projection
OSPRay Rendering

Enable OSPRay

g2 Properties Panetinm paraview :
178 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Did you know?

The Search box is a recurring widget in paraview. Several other panels and dialog boxes, including the Settings
dialog and the Color Map Editor , show a similar widget. Its behavior is also exactly the same as in the case of the
Properties panel. Don’t forget that the button can be used to toggle between default and advanced modes.

Properties

The Properties , Display , and View sections in the panel show widgets for properties on the active source, its
display properties in the active view, and the properties for the active view, respectively. You can collapse/expand each
of these sections by clicking on the section name.

To the right of each section name is a set of four buttons. Clicking the copies the current set of property values to the
clipboard while clicking the will paste those property values into another compatible panel section. Note that the paste
icon is enabled only for panel sections where the copied properties can be pasted.

The next two buttons and = enable customizing the default values used for those properties. Refer to Section 2.12.2
to learn more about customizing default property values.

2.1.2 Customizing the layout

The Properties panel, by default, is set up to show the source, display, and view properties on the same panel. You
may, however, prefer to have each of these sections in a separate dockable panel. You can indeed do so using the
Settings dialog accessible from the Edit > Settings menu.

On the General tab search of the properties panel using the Search box, you should see the setting that lets you
pick whether to combine all the sections in one (default), to separate out either the Display or View sections in a panel,
or to create separate panels for each of the sections. You will need to restart paraview for this change to take effect.
Also, since the Apply and Reset buttons only apply to the Properties section, they will only be shown in the dock
panel that houses it.

2.2 Object Shading Properties

When visualizing any data it is important to control how the data is actually rendered. Most of the properties controlling
the appearance of an object can be found in the Display Properties section in the object inspector (see section
display properties). This chapter tries to entirely cover the lighting properties of an object when using the Surface
representation.

2.2.1 Flat and Gouraud Lighting

These lighting models are intended to be easy-to-use basic models for general visualisation purposes. Both of these
models are mainly controlled by the same parameters. The only difference between the two is that the flat shading
model does not interpolate the normals of the rendered surfaces, meaning that a Gouraud lighting with no normal array
will produce the same result as the flat shading model.

The parameters for these two models are :
» Specular: how specular the object is, that is how much of the light it will reflect.

¢ Specular Color: the color of the resulting specular.

2.2. Object Shading Properties 179

ParaView Users Guide Documentation, Release 5.12.0

Settings

General | Camera | Render View | Color Palette |

properties panel

You can choose to show source, display and view properties in a
single 'Properties' panel, or place them in separate dock panels.
Combined Properties panel h' -
Combined Properties panel

View Properties in a separate panel

Separate panels for each type of properties

* Restart required for some settings to take effect

= Reset

Restore Defaults ' Apply ¥ Cancel

Fig. 2.2: Options for customizing the Properties panel layout using the Settings (left). View properties in a
separate dock panel (right).

180 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Specular Power: how much the specular is spread on the object. The lower the wider it spreads.
Luminosity: how much light the object emits. Only takes effect with a pathtracer backend.
Ambient: coefficient for the ambient lighting.

Diffuse: coeflicient for the diffuse lighting.

Texture Coordinates: the texture coordinates to use when applying a texture. This is needed to be able to use the
Texture property.

Texture: also called albedo, this is the perceived color of the object.
Show Texture On Backface: whether or not to show the texture on the backface of the surface.

Flip Texture: if on, flip the color texture.

Some other properties specific to the Gouraud shading :

Normal Array: what array to use as the normal array
Tangent Array: what array to use as the tangent array. Only needed when using the Normal Texture.

Normal Texture: a normal map. This allows to have more precise shading without the need to subdivide the
geometry. Stores the normal direction {x,y,z/} in the RGB channels.

Normal Scale: scale factor for the normal map.

2.2.2 PBR Lighting

This lighting model is more complex than the previous ones but allows a wider range of effect on the objects and a
more realistic rendering. Since this model is more complex to grasp, several blog posts have been written to explain
how to use it (links to blogs are provided in the relevant sections below).

Basic parameters for this model are :

Metallic: whether the object is metallic (= 1.0) or non-metallic / dielectric (= 0.0). For most materials, the value
is either 0.0 or 1.0 but any value in between is valid.

Roughness: parameter used to specify how glossy an object is.
Luminosity: how much light the object emits. Only takes effect with a pathtracer backend.

Diffuse: the global amount of light reflected by the object. Should usually be set to 1.0 as it is not an actual
parameter of the theorical PBR shading model but it can be used for artistic effects.

Following are more advanced properties. They can be hard to understand visually without knowing the theory behind
it so it is advised to refer to the linked blog posts when using them for the first time.

Anisotropy: the strength of the anisotropy (between 0.0 and 1.0). 0.0 means an isotropic material, 1.0 means a
fully anisotropic material.

Anisotropy Rotation: rotates the direction of the anisotropy (ie. the tangent) around the normal counter-clockwise
(between 0.0 and 1.0). A value of 1.0 corresponds to a rotation of 2 * PJ.

— anisotropy parameters are fully detailed here: anisotropy blog

Coat Strength: the strength of the coat layer, between 0.0 and 1.0. 0 means no clear coat. This parameter can be
considered as the thickness of the coating.

Coat Roughness: the roughness of the coat layer.

Coat Color: the color of the coat layer. Specular reflections on the coat layer are always white, but this parameter
modifies the radiance that passes through it.

Base IOR: the refractive index of the base layer.

2.2. Object Shading Properties 181

https://www.kitware.com/pbr-journey-part-2-anisotropy-model-with-vtk/

ParaView Users Guide Documentation, Release 5.12.0

")
W
e
- &
.
J
@
p
Q
*
a

Metals

Roughness

182 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Anisotropy Rotation

2.2. Object Shading Properties 183

ParaView Users Guide Documentation, Release 5.12.0

Coat IOR: the refractive index of the coat layer.
Edge Tint: the color of the reflection on the edges at grazing angles for a metallic material.

— coat parameters are fully detailed here: clear coat blog

Dielectric

(w/ blue coat)

(w/ red coat)

[“Oo

0.4 0.6

Coat Strength

Finally, some parameters can also be mapped using textures. As in the Gouraud shading model, a proper value for the
Texture Coordinates and Normal Array properties will be needed in order to apply textures.

Base Color Texture: also called albedo, this is the perceived color of the object, the diffuse color for non-metallic
objects or the specular color for metallic objects.

Normal Texture: a normal map. This allows to have more precise shading without the need to subdivide the
geometry. Stores the normal direction {x,y,z/} in the RGB channels.

Material Texture: ambient Occlusion/Roughness/Metallic factors on the Red/Green/Blue channels. Also called
ORM texture.

Coat Normal Texture: a normal map for the clear coat layer.

Anisotropy Texture: texture that controls the anisotropy strength on the red channel, while the green channel
holds the anisotropy rotation. The blue channel is discarded.

Emissive Texture: for light-emitting texture. Note that the material will not actually emit light, and the texture is
ignored by OSPRay and NVidia pathtracing backends.

184

Chapter 2. ParaView Reference Manual

https://www.kitware.com/pbr-journey-part-3-clear-coat-model-with-vtk/

ParaView Users Guide Documentation, Release 5.12.0

2.3 Color maps and transfer functions

One of the first things that any visualization tool user does when opening a new dataset and looking at the mesh is to
color the mesh with some scalar data. Color mapping is a common visualization technique that maps data to color,
and displays the colors in the rendered image. Of course, to map the data array to colors, we use a transfer function.
A transfer function can also be used to map the data array to opacity for rendering translucent surfaces or for volume
rendering. This chapter describes the basics of mapping data arrays to color and opacity.

2.3.1 The basics

Color mapping (which often also includes opacity mapping) goes by various names including scalar mapping and
pseudo-coloring. The basic principle entails mapping data arrays to colors when rendering surface meshes or volumes.
Since data arrays can have arbitrary values and types, you may want to define to which color a particular data value
maps. This mapping is defined using what are called color maps or transfer functions. Since such mapping from data
values to rendering primitives can be defined for not just colors, but opacity values as well, we will use the more generic
term transfer functions.

Of course, there are cases when your data arrays indeed specify the red-green-blue color values to use when rendering
(i.e., not using a transfer function at all). This can controlled using the Map Scalars display property. Refer to Chapter
Section 1.4.3 for details. This chapter relates to cases when Map Scalars is enabled, i.e., when the transfer function
is being used to map arrays to colors and/or opacity.

In ParaView, you can set up a transfer function for each data array for both color and opacity separately. ParaView
associates a transfer function with the data array identified by its name. The same transfer function is used when
coloring with the same array in different 3D views or results from different stages in the pipeline. You can also use
Section 2.3.2 to have independant color map by array name and representation.

For arrays with more than one component, such as vectors or tensors, you can specify whether to use the magnitude or
a specific component for the color/opacity mapping. Similar to the transfer functions themselves, this selection of how
to map a multi-component array to colors is also associated with the array name. Thus, two pipeline modules being
colored with the arrays that have the same name will not only be using the same transfer functions for opacity and color,
but also the component/magnitude selection.

Common Errors

Beginners find it easy to forget that the transfer function is associated with an array name and, hence, are surprised
when changing the transfer function for a dataset being shown in one view affects other views as well. Using different
transfer functions for the same variable is discouraged by design in ParaView, since it can lead to the misinterpretation
of values. If you want to use different transfer functions, despite this caveat, you can use the Separate Color Map feature
(see Section 2.3.2).

There are separate transfer functions for color and opacity. The opacity transfer function is used for volume rendering,
and it is optional when used for surface renderings.

2.3. Color maps and transfer functions 185

ParaView Users Guide Documentation, Release 5.12.0

Color mapping in paraview

2 @ ¥ Proportos
Apnhy Rese ® Delete T
coloring '-_:'--'
% Properties (can.ex2)] = % kel

= Display (UnstructuredGridRe n] I % b

Coloring
B vikBlockCaolors H
& Edit ¢ : 2 - I
d4k View (Render View)] I & -

You can pick an array to use for color mapping, using either the Properties panel or the Active Variables
Controls toolbar. You first select the array with which to color and then select the component or magnitude for
multi-component arrays. ParaView will either use an existing transfer function or create a new one for the selected
array.

Color mapping in pvpython

Here’s a sample script for coloring using a data array from the disk_out_ref.ex2 dataset.

from paraview.simple import *

create a new 'ExodusIIReader’

reader = ExodusIIReader(FileName=['disk_out_ref.ex2'])
reader.PointVariables = ['V']

reader.ElementBlocks = ['Unnamed block ID: 1 Type: HEX8']

show data in view
display = Show(reader)

set scalar coloring
(continues on next page)

186 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

N 8 = SClev ~| Magnituc ~
P — | @ Soli®®Color =
i @ @ [o Ashs o Extr
o CH4 '
Pip » GaMe3 5% | o Layt
ﬁ builtin: o ﬁlznbalmudeld P
L)
P > PedigreeNodeld
o Pres
o Temp
= W

@ GlobalElementid
@ Objectid

@ PedigreeElementid
@ cellNormals

@ vtkCompositelndex

Fig. 2.3: The controls used for selecting the array to color within the Properties panel (top) and the Active
Variables Controls toolbar (bottom).

(continued from previous page)

ColorBy(display, ('POINTS', 'V'"))

rescale color and/or opacity maps used to include current data range
display.RescaleTransferFunctionToDataRange (True)

The ColorBy function provided by the simple module ensures that the color and opacity transfer functions are set up
correctly for the selected array, which is using an existing one already associated with the array name or is creating a
new one. Passing None as the second argument to ColorBy will display scalar coloring.

2.3.2 Editing the transfer functions in paraview

In paraview, you use the Color Map Editor to customize the color and opacity transfer functions. You can toggle
the Color Map Editor visibility using the View > Color Map Editor menu option.

As shown in Fig. 2.4, the panel follows a layout similar to the Properties panel. The panel shows the properties for
the transfer function, if any, used for coloring the active data source (or filter) in the active view. If the active source if
not visible in the active view, or is not employing scalar coloring, then the panel will be empty.

Similar to the Properties panel, by default, the commonly used properties are shown. You can toggle the visibility of
advanced properties by using the button. Additionally, you can search for a particular property by typing its name in
the Search box.

Whenever the transfer function is changed, we need to re-render, which may be time consuming. By default, the panel
requests a render on every change. To avoid this, you can toggle the button. When unchecked, you will need to
manually update the panel using the Render Views button.

2.3. Color maps and transfer functions 187

ParaView Users Guide Documentation, Release 5.12.0

Color Map Editor (%]

Search ... (use Esc to clear texk) ||E||E”

Array Mame: lterations

Automatic Rescale
Range Mode

Interpret Values As Categories

| Grow and update on 'Apply’ - |

Rescale On Visibility Change

Mapping Data

Select a color map from default presets - |

Data: | |

Enable Freehand Drawing OF Opacity Transfer Function
Use Log Scale When Mapping Data To Colors

Enable Opacity Mapping For Surfaces

Data Histogram

Display Data Histogram

Number of Bins: = | ! |

Color Mapping Parameters

Color Space | Diverging - |

|O Man Color |
Man Opacity mit |

Color Discretization

v| Discretize

MNumber OF Table — e 755 |
Values -
R Ld

araView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

The button restores the application default settings for the current color map.

The - and buttons save the current color and opacity transfer function, with all its properties, as the default transfer

Y
function. ParaView will use it next time it needs to set up a transfer function to color a new data array. The | “ button
saves the transfer function as default for an array of the same name while the button saves the transfer function as
default for all arrays. Note that this will not affect transfer functions already setup. Also this is saved across sessions,
so ParaView will remember this even after restart.

Separate Color Map

E [EC f @ © RTData -

Fig. 2.5: The Separate Color Map button

In order to force ParaView to use a separate color map on the current Active Representation, click on the button shown
in Fig. 2.5. A separate color map is not shared across representations by name, but is instead uniquely associated with
the array name and the representation.

This can also easily be done in Python:

from paraview.simple import *

Wavelet()

waveletlDisplay = Show()
waveletlDisplay.SetRepresentationType('Surface')

set scalar coloring
ColorBy(wavelet1Display, 'RTData')

set the usage of a Separate Color Map
waveletlDisplay.UseSeparateColorMap = True

or use the ColorBy interface directly
ColorBy(waveletlDisplay, 'RTData', separate = True)

display the same data in another view for comparison with different color map
get layout
layoutl = GetLayout()

split cell
layoutl.SplitHorizontal(®, 0.5)

renderViewl = GetActiveView()

Create a new Render View'
renderView2 = CreateView('RenderView')

place view in the layout
layoutl.AssignView(2, renderView2)

(continues on next page)

2.3. Color maps and transfer functions 189

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

set active view
SetActiveView(renderView?2)

wavelet2Display = Show()
wavelet2Display.SetRepresentationType('Surface")

Use the ColorBy interface to create a separated color map
ColorBy(wavelet2Display, 'RTData', separate = True)

get separate color transfer function/color map for RTData’
separate_wavelet2Display_RTDatalUT = GetColorTransferFunction('RTData', wavelet2Display,.
—.separate=True)

Apply a preset using its name.
separate_wavelet2Display_RTDataLUT.ApplyPreset('Cold and Hot', True)

ResetCamera(renderViewl)
ResetCamera(renderView?2)

RenderAllViews()
Mapping data
& M Cobor Map Editor
mappingl SO
Aurey Marme: RTData Labal showing
Mapping Data values al selacied
control point
Intarpalaion ol
S control widged
QOpacily transler 9 i
function editor
. TMBS 500 0324 -
- i

Color control
points

Color fransher
functson editor

Uata: 1daS

st log scale when mapping data fo colors
Enabde opacity mapping for surfaces

Uise loo scale when magping data (o opacity

Data value for
salectad control

Fig. 2.6: Transfer function editor and related properties

190 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

The Mapping Data group of properties controls how the data is mapped to colors or opacity. The transfer function
editor widgets are used to control the transfer function for color and opacity. The panel always shows both the transfer
functions. Whether the opacity transfer function gets used depends on several things:

¢ When doing surface mesh rendering, it will be used only if Enable opacity mapping for surfaces is
checked

* When doing volume rendering, the opacity mapping will always be used.

To map the data to color using a log scale, rather than a linear scale, check the Use log scale when mapping
data to colors. Itis assumed that the data is in the non-zero, positive range. ParaView will report errors and try
to automatically fix the range if it is ever invalid for log mapping.

The range of a color map is a very important property that controls the mapping of data values to colors. The range
can be automatically updated in a number of situations for convenience. How the range is updated is controlled by the
Automatic Rescale Range Mode property in the Color Map Editor . When Never is selected, the data range
will never be updated automatically. When Grow and update on 'Apply' is selected, ParaView will grow the
color/opacity map range to include the current data range every time you hit Apply on the Properties panel. Thus,
when the data range changes, if the timestep is changed, the color/opacity map range won’t be affected. To grow the
range on change in timestep as well, use the Grow and update every timestep option. Now the range will be
updated on Apply as well as when the timestep changes. Grow indicates that the color/opacity map range will only be
increased, never shrunk, to include the current data range. If you want the range to match the current data range exactly,
then you should use the Clamp and update every timestep option. Now the range will be clamped to the exact
data range each time you hit Apply on the Properties panel or when the timestep changes. The initial value for the
Automatic Rescale Range Mode is controlled by the General setting Transfer Function Reset Mode in the
Settings dialog (see Section 2.12.1).

Transfer function editor

Using the transfer function editors is pretty straightforward. Control points in the opacity editor widget and the color
editor widget are independent of each other. To select a control point, click on it. When selected, the control point is
highlighted with a red circle and data value associated with the control point is shown in the Data input box under the
widget. Clicking in an empty area will add a control point at that location. To move a control point, click on the control
point and drag it. You can fine tune the data value associated with the selected control point using the Data input box.
To delete a control point, select the control point and then type the Delete key. Note that the mouse pointer should be
within the transfer function widget. While the end control points cannot be moved or deleted, if you drag the bars at
either end, you can change the range of the transfer function. You can also rescale the entire transfer function to move
the control points, as is explained later.

In the opacity transfer function widget, you can move the control points vertically to control the opacity value associated
with that control point. In the color transfer function widget, you can select the control point and then type the Enter
or Return key to pop up a color chooser dialog to set the color associated with that control point.

The opacity transfer function widget also offers some control over the interpolation between the control points. Double
click on a control point to show the interpolation control widget, which allows for changing the sharpness and midpoint
that affect the interpolation. Click and drag the control handles to see the change in interpolation.

The combo box at the top of the transfer function editor is used to quickly switch between the “Default” presets.
Which presets are default ones can be configured from the Color Preset manager, which can be accessed with the
Favorites button described later.

The several control buttons on the right side of the transfer function widgets support the following actions:

* : Rescales the color and opacity transfer functions using the data range from the data source selected in the
Pipeline browser, i.e., the active source. This rescales the entire transfer function. Thus, all control points
including the intermediate ones are proportionally adjusted to fit the new range.

2.3. Color maps and transfer functions 191

ParaView Users Guide Documentation, Release 5.12.0

Select a color map from default presets

- Cool to Warm
- Cool to Warm (Extended)

Black-Body Radiation

Inferno (matplotlib)

Black, Blue and White

- - Blue Orange (divergent)

: Rescales the color and opacity transfer functions using a range provided by the user. A dialog will be popped
up for the user to enter the custom range.

: Rescales the color and opacity transfer functions to the range of values for data over all timesteps. This
operation may be costly as data for all timesteps needs to be read.

: Rescales the color and opacity transfer functions using the range of values for the elements (cells or points)
visible in the view. This operations assigns the entire range of colors to visible elements which may reveal
patterns not visible otherwise.

: Inverts the color transfer function by moving the control points, e.g,. a red-to-green transfer function will
be inverted to a green-to-red one. This only affects the color transfer function and leaves the opacity transfer
function untouched.

: Loads the color transfer function from a preset. The Color Preset manager dialog pops up to enable you to
choose one of the color maps included with ParaView or import presets from a file.

: Saves the current color transfer function to presets. The Color Preset manager dialog pops up to let you
name the transfer function and export the transfer function to a file. The opacity function can also be saved with
the transfer function. The preset will be added under the Default and User groups.

: This toggles the detailed view for the transfer function control points. This is useful to manually enter values
for the control points rather than using the Ul

192

Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Color mapping parameters

Color Mapping Parameters
Color Space RGE H

Use Below Range Color

@ 2eicw Range Cosr

Use Above Range Color

@ Above Range Color
Color Mapping Parameters

¥ Man Color

Nan Opacity .

Color Discretization

Discretize

Number Of Table SER

Values -
Fig. 2.7: Color Mapping Parameters, including advanced properties. Advanced properties are enabled by clicking the
gear icon at the top right of the Color Map Editor (not shown).}

The Color Mapping Parameters group of properties provides additional control over the color transfer function,
including control over the color interpolation space, which is either RGB, HSV, Lab, Diverging, or Lab/CIEDE2000.
To color data values falling below or above the range of the color map with special colors, enable the advanced Use
Below Range Color and Use Above Range Color options, respectively. You can choose different colors for data
falling on either side of the range. When color mapping floating point arrays with NaNs, you can select the color and
opacity to use for NaN values. You can also affect whether the color transfer function uses smooth interpolation or
discretizes the map into a fixed number of colors.

2.3.3 Editing the transfer functions in pvpython

In pvpython, you control the transfer functions by getting access to the transfer function objects and then changing
properties on those. The following script shows how you can access transfer functions objects.

from paraview.simple import *

You can access the color and opacity transfer functions
for a particular array as follows. These functions will
create new transfer functions if none exist.

(continues on next page)

2.3. Color maps and transfer functions 193

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)
The argument is the array name used to locate the transfer
functions.
>>> colorMap = GetColorTransferFunction('Temp')
>>> opacityMap = GetOpacityTransferFunction('Temp')

Once you have access to the color and opacity transfer functions, you can change properties on these similar to other
sources, views, etc. Using the Python tracing capabilities to discover this API is highly recommended.

Rescale transfer functions to a specific range
>>> colorMap.RescaleTransferFunction(1.0, 19.9495)
>>> opacityMap.RescaleTransferFunction(1.0, 19.9495)

Invert the color map.
>>> colorMap.InvertTransferFunction()

Map color map to log-scale preserving relative positions for
control points

>>> colorMap.MapControlPointsToLogSpace()

>>> colorMap.UselLogScale = 1

Return back to linear space.
>>> colorMap.MapControlPointsToLinearSpace()
>>> colorMap.UselLogScale = 0

Change using of opacity mapping for surfaces
>>> colorMap.EnableOpacityMapping = 1

Explicitly specify color map control points
The value is a flattened list of tuples
(data-value, red, green, blue). The color components
must be in the range [0.0, 1.0]
>>> colorMap.RGBPoints = [1.0, 0.705, 0.015, 0.149,
5.0, 0.865, 0.865, 0.865,
10.0, 0.627, 0.749, 1.0,
19.9495, 0.231373, 0.298039, 0.752941]

Similarly, for opacity map. The value here is
a flattened list of (data-value, opacity, mid-point, sharpness)
>>> opacity.Points = [1.0, 0.0, 0.5, 0.0,

9.0, 0.404, 0.5, 0.0,

19.9495, 1.0, 0.5, 0.0]

Note, in both these cases the controls points are assumed to be sorted
based on the data values. Also, not setting the first and last

control point to have same data value can have unexpected artifacts

in the 'Color Map Editor' panel.

Oftentimes, you want to rescale the color and opacity maps to fit the current data ranges. You can do this as follows:

>>> source = GetActiveSource()

Update the pipeline, if it hasn't been updated already.

(continues on next page)

194 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

>>> source.UpdatePipeline()

First, locate the display properties for the source of interest.
>>> display = GetDisplayProperties()

Reset the color and opacity maps currently used by 'display' to

use the range for the array 'display' is using for color mapping.

This requires that the 'display' has been set to use scalar coloring

using an array that is available in the data generated. If not, you will
get errors.

>>> display.RescaleTransferFunctionToDataRange ()

2.3.4 Color legend

e

Annotations

Labels

Title

Handles (shown on mouse
over) to resize the legend

Fig. 2.8: Color legend in ParaView.

The color legend, also known as scalar bar or color bar, is designed to provide the user information about which color
corresponds to what data value in the rendered view. You can toggle the visibility of the color legend corresponding to
the transfer function being shown/edit in the Color Map Editor by using the button near the top of the panel. This
button affects the visibility of the legend in the active view.

Fig. 2.8 shows the various components of the color legend. By default, the title is typically the name of the array (and
component number or magnitude for non-scalar data arrays) being mapped. Automatically generated labels appear on
one side of the color legend, while on the other side are annotations, optionally including start and end annotations
depicting the minimum and maximum of the color legend range.

The color legend can be manipulated with the mouse. You can click and drag the legend to place it at any position in
the view. Additionally, you can change the length of the legend by clicking and dragging the end-markers shown when
you hover the mouse pointer over the legend.

2.3. Color maps and transfer functions 195

ParaView Users Guide Documentation, Release 5.12.0

Color legend parameters

You can edit the color legend parameters by clicking on the button on the Color Map Editor panel. This will pop
up the Edit Color Legend Properties dialog that shows the available parameters. Any changes made will affect
only the particular color legend in the active view.

The first few options in the Edit Color Legend Properties control the orientation and location of the color legend
in the render view. Auto Orient turns on automatic determination of the color legend’s orientation. The color legend
will change orientation to horizontal when it is dragged to the bottom or the top of the render view, and it will change
to vertical when it is dragged to the left or right side. When disabled, you can choose the orientation you want the
color legend to have by choosing an option in the Orientation combo-box. The Window Location option controls
the location of the color legend in the window; if the value AnyLocation is selected, then the color legend will not be
forced into any particular position. The color legend can be positioned by clicking and dragging it with the mouse in
the render view, or the Position property can be specified explicitly with fractional coordinates that range from [0, 1]
and represent the fraction of the window width (or height) where the color legend’s bottom left corner should be placed.
Note that if the color legend is placed interactively with the mouse, the Window Location option will automatically
change to AnyLocation .

Besides the obvious changing of title text and font properties for the title, labels, and annotations, there are some other
parameters that control the appearance of the color legend.

By default, the title is rotated 90 degrees counter-clockwise when the legend is oriented vertically to better align with
the legend. Checking the Horizontal Title box forces the title of the color legend to be horizontal regardless of
color legend orientation.

Draw Annotations determines whether the annotations (including the start and end annotations) are to be drawn at
all.

When checked, Draw Nan Annotation results in the color legend showing the NaN color set in the Color Map
Editor panel in a separate color box right beside the color legend. The annotation text shown for that box can be
modified by changing the Nan Annotation text.

If Automatic Label Format is checked, ParaView will try to pick an optimal representation for numerical values
based on the value and available screen space. By unchecking it, you can explicitly specify the printf-style format
to use for numeric values. To explicitly label values of interest, enable the Use Custom Labels option. You can
specify exactly the labeled values you wish to display in the table that appears when this option is chosen. Color Bar
Thickness is used to control the thickness of the legend. It is defined in terms of points just like how font sizes are
specified. Use Color Bar Length to explicitly set the length of the color bar. This property is defined as a fraction
in the range [0, 1] of the window width (when the color legend is oriented horizontally) or height (when oriented
vertically).

Color legend in pvpython

To show the color legend or scalar bar for the transfer function used for scalar mapping a source in a view, you can use
API on its display properties:

>>> source = ...
>>> display = GetDisplayProperties(source, view)

to show the color legend
>>> display.SetScalarBarVisibility(view, True)

to hide the same
>>> display.SetScalarBarVisibility(view, False)

196 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

@] Edit Color Legend Properties

E-:’:.’::r;'*. s Esc to clear text) 1-_'_&3
Layout
Auto Orient
Orientation Vertical s
Window Location Lawer R‘igh-lcc,rnfr E
Position H.a9 002
Title Texts
Tithe RTData
Companeént Titla
Tithe Justification Contered E

Harizontal Tithe
Title Font Properties

Arial B s (2O oo 2B TS
Text/Annotation Font Properties
Arial o6 |2|O oo 2B TS

Labels
Automatic Labal Farmat
Label Format %-#56.3g
Draw Tick Marks
Draw Tick Labels

Use Custom Labels
Add Range Labels
Range Label Format «.451@
Annotations
Draw Annotations

Add Range Annotations

Automatic Annotations

Draw Man Annotation
Man Annotation faM
Tick and Annotation ' X A

'1'- - . -

Positions cks right/top, annotations left/bottom

Reverse Legend
Color Bar Thickness 15

Color Bar Length .33

4 kel W Apply L Reset X cancel m

2.3. Color maps and transfer functions ' R 197

ParaView Users Guide Documentation, Release 5.12.0

Fig. 2.10: Color legend showing NaN annotation

To change the color legend properties as in Section 2.3.4, you need to first get access to the color legend object for the
color transfer function in a particular view. These are analogous to display properties for a source in a view.

>>> colorMap = GetColorTransferFunction('Temp')

get the scalar bar in a view (akin to GetDisplayProperties)
>>> scalarBar = GetScalarBar(colorMap, view)

Now, you can change properties on the scalar bar object.
>>> scalarBar.TitleFontSize = 8
>>> scalarBar.DrawNanAnnotation = 1

2.3.5 Annotations

Simply put, annotations allow users to put custom text at particular data values in the color legend. The min and max
data mapped value annotations are automatically added. To add any other custom annotations, you can use the Color
Map Editor.

Since the list of annotations is an advanced property, you need to either toggle the visibility of advanced properties
using the icon near the top of the panel or type annotations in the search box. That will show the Annotations
widget, which is basically a list widget where users can enter key-value pairs, rather than value-annotation pairs, as
shown in Fig. 2.11.

You can use the buttons of the right on the widget to add/remove entries. Enter the data value to annotate under the
Value column and then enter the text to display at that value under the Annotation column.

198 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

' Add annotation

S = /| row
anno el B e . |
Array Name: wvtkCompositelndex Fy y REI’T‘I DVE SE]ECtEd
i v, annotation row
Annotations P .
i ¥
| Value | Annatation £ / ' Add \,ra|u95 frgm
2 This 5 an annotation = ’ ‘ se|g¢ted SDL"'CE
s
‘w - Addvalues from
visible sources
1) S
e = [Render views |[&F . Remove all

entries

Fig. 2.11: Widget to add/edit annotations on the Color Map Editor panel

You can use the Tab (tab) key to edit the next entry. Hitting Tab after editing the last entry in the table will auto-
matically result in adding a new row, thus, making it easier to add bunch of annotations without having to click any
buttons.

Some annotation texts may not show up on the legend. There are two possible reasons an annotation may not be
shown. First, the value added is outside the mapped range of the color transfer function. Second, Draw Annotations
is unchecked in the Color Legend Parameters dialog.

The ﬁ and ﬂ buttons can be used to fill the annotations widget with unique discrete values from a data array, if
possible. Based on the number of distinct values present in the data array, this may not yield any result (Instead, a

warning message will be shown). The data array values come either from the selected source object if you use the ﬁ

button or it comes from the visible pipeline objects if you use the a button.

Annotations in pvpython

Annotations is a property on the color map object. You simply get access to the color map of interest and then change
the Annotations property.

>>> colorMap = GetColorTransferFunction('Temp')

Annotations are specified as a flattened list of tuples
(data-value, annotation-text)
>>> colorMap.Annotations = ['1"', 'Slow',

'10', 'Fast']

2.3. Color maps and transfer functions 199

ParaView Users Guide Documentation, Release 5.12.0

2.3.6 Categorical colors

A picture is worth a thousand words, they say, so let’s just let the picture do the talking. Categorical color maps allow
you to render visualizations as shown in Fig. 2.12.

Ciear type
Laghtwenght spar I

kdker

Helical A .

Helical B
Epatroctasd A I
Epatrochoed B

par l

5 puar

Fig. 2.12: Visualization using a categorical color map for discrete coloring

When one thinks of scalar coloring, one is typically talking of mapping numerical values to colors. However, in some
cases, the numerical values are not really numbers, but enumerations such as elements types and gear types (as in Fig.
2.12) or generally, speaking, categories. The traditional approach of using an interpolated color map specifying the
range of values with which to color doesn’t really work here. While users could always play tricks with the number of
discrete steps, multiple control points, and annotations, it is tedious and cumbersome.

Categorical color maps provide an elegant solution for such cases. Instead of a continuous color transfer function, the
user specifies a set of discrete values and colors to use for those values. For any element where the data value matches
the values in the lookup table exactly, paraview renders the specified color; otherwise, the NaN color is used.

The color legend or scalar bar also switches to a new mode where it renders swatches with annotations, rather than a
single bar. You can add custom annotations for each value in the lookup table.

Categorical Color: User Interface

To tell paraview that the data array is to be treated as categories for coloring, check the Interpret Values As
Categories checkbox in the Color Map Editor panel. As soon as that’s checked, the panel switches to categorical
mode: The Mapping Data group is hidden, and the Annotations group becomes a non-advanced group, i.e., the
annotations widget is visible even if the panel is not showing advanced properties, as is shown in Fig. 2.13.

The annotations widget will still show any annotations that may have been added earlier, or it may be empty if none
were added. You can add annotations for data values as was the case before using the buttons on the side of the widget.
This time, however, each annotation entry also has a column for color. If color has not been specified, a question mark
icon will show up; otherwise, a color swatch will be shown. You can double click the color swatch or the question mark
icon to specify the color to use for that entry. Alternatively, you can choose from a preset collection of categorical color
maps by clicking the button.

200 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

= 1] Cokor biag §8mor

Hd anmnol]
Arvy Mame: wHiEkeckColors PN Bnnoieo

Jafomatic Rescals o ang update svery timestep E
Rarge Mode

B rerpret Values As Categories

Remove selected
annatatian

Show Categorcal Coloni in Data Rangs Only

Fescale On Visibsty Change Add active values
Color selected R 1fom .Sf:_lr}:lcc
for value \ S Vase Rmatatbon & sources

) - =

Cpacity /’,—-’: = Al e = ;‘nm J”I'w.: valugs
selecied for ‘/, rom visible
value e SOUICes

Enable sefting = ‘{_{:hcﬂsﬁ preset

opacities for
annoiations

Save as new
prase

Erabls opacy mapping for surfaces

7

Delete all
annotations

Fig. 2.13: Default Color Map Editor when Interpret Values As Categories is checked.

As before, you can use Tab key to edit and add multiple values. Hence, you can first add all the values of interest in
one pass and then pick a preset color map to set colors for the values added. If the preset has fewer colors than the
annotated values, then the user may have to manually set the colors for those extra annotations.

Common Erros

Categorical color maps are designed for data arrays with enumerations, which are typically integer arrays. However,
they can be used for arrays with floating point numbers as well. With floating point numbers, the value specified for
annotation may not match the value in the dataset exactly, even when the user expects it to match. In that case, the NaN
color will be used.

Categorical colors in pvpython

>>> categoricalColorMap = GetColorTransferFunction('Modes')
>>> categoricalColorMap.InterpretValuesAsCategories = 1

specify the labels for the categories. This is similar to how
other annotations are specified.
>>> categoricalColorMap.Annotations = ['0', "Alpha', '1', 'Beta']

now, set the colors for each category. These are an ordered list
of flattened tuples (red, green, blue). The first color gets used for
the first annotation, second for second, and so on
>>> categoricalColorMap.IndexedColors = [0.0, 0.0, 0.0,
0.89, 0.10, 0.10]

2.3. Color maps and transfer functions 201

ParaView Users Guide Documentation, Release 5.12.0

2.4 Comparative visualization

Comparative visualization in ParaView refers to the ability to create side-by-side visualizations for comparing with
one another. In its most basic form, you can indeed use ParaView’s ability to show multiple views side by side to set up
simultaneous visualizations. But, that can get cumbersome too quickly. Let’s take a look at a simple example: Let’s say
you want to do a parameter study where you want to compare isosurfaces generated by a set of isovalues in a dataset.
To set up such a visualization, you’ll need to first create as many Render View s as isovalues. Then, create just as
many Contour filters, setting each one up with a right isovalue for the contour to generate and display the result in one
of the views. As the number of isovalues increases, you can see how this can get tedious. It is highly error prone, as
you need to keep track of which view shows which isovalue. Now, imagine after having set up the entire visualization
that you need to change the Representation type for all the of the isosurfaces to Wireframe !

Comparative View s were designed to handle such use-cases. Instead of creating separate views, you create a single
view Render View (Comparative) . The view itself comprises of a configurable m x n Render Views. Any data
that you show in this view gets shown in all the internal views simultaneously. Any display property changes, such as
scalar coloring and representation type are also maintained consistently between these internal views. The interactions
in the internal views are linked, so when you interact with one, all other views update as well. While this is all nice
and well, the real power of Comparative View s becomes apparent when you set up a parameter to vary across the
views. This parameter can be any of the properties on the pipeline modules such as filter properties and opacity, or it
could be the data time. Each of these internal views will now render the result obtained by setting the parameter as
per your selection. Going back to our original example, we will create a single Contour filter that we show in Render
View (Comparative) with as many internal views as the isovalue to compare. Next, we will set up a parameter study
for varying the Isosurfaces property on the Contour filter, and, viola! The view will generate the comparative
visualization for us!

In this chapter, we look at how to configure this view and how to set these parameters to compare. We limit our
discussion to Render View (Comparative) . However, the same principles are applicable to other comparative
views, including Bar Chart View (Comparative) and Line Chart View (Comparative) .

I REsdstdas Heea

O=2® Extract Location [90 B O

B [o Layout #1x | +
5% o @& RenderViewComparativel (m]80]x

back

= Properties (Contour1) (3

= Display (GeometryRepresentation)

Follow Frontface

Comma-separate volues accepted.
T » [=

0|70 113333

= View (Render View (Comparative)) [}
Background

Gradent 5 Tsessr 200
®coor I Restore pefaut
®coor2 I Restoe pefaut

Informa..._| Comparative View Inspe...

Fig. 2.14: Render View (Comparative) in paraview showing a parameter study. In this case, we are comparing
the visualization generated using different isovalues for the Contour filter. The Comparative View Inspector
dockpanel (on the right) is used to configure the parameter study.

202 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

2.4.1 Setting up a comparative view

To create Render View (Comparative) in paraview, split or close the active view and select Render View
(Comparative) from the new view creation widget. paraview will immediately show four Render View s laid
outina 2 x 2 grid. While you cannot resize these internal views, notice that you can still split the view frame and create
other views if needed.

The Properties panel will show properties similar to those available on the Render View under the View properties
section. If you change any of these properties, they will affect all these internal views, e.g., setting the Background
color to Gradient will make all the views show a gradient background.

Comparative View Inspector (&lx]

Layout: |2 |5 x |2 —

Overlay all comparisons

Parameter

|1 Contourl:lsosurfaces

5 || Contourl I'. Isosurfaces -

--Contourl:lsosurfaces
Comma-separated values accepted.
] A - B

070 113.333

1|156.667 200

|

Fig. 2.15: Comparative View Inspector in paraview used to configure the active comparative view.

To configure the comparative view itself, you must to use the Comparative View Inspector (Fig.2.15) accessible
from the View menu. The Comparative View Inspector is a dockable panel that is enabled when the active view
is a comparative view.

To change how many internal views are used in the active comparative view and how they are laid out, use the Layout
. The first value is the number of views in the horizontal direction and the second is the count in the vertical direction.

Besides doing a parameter study in side-by-side views, you can also show all the results in a single view. For that,
simply check the Overlay all comparisons checkbox. When checked, instead of getting a grid of m x n views,
you will only see one view with all visible data displayed m x n times.

To show data in this view is the same as any other view: Make this view active and use the Pipeline Browser to
toggle the eyeball icons to show data produced by the selected pipeline module(s). Showing any dataset in this view will
result in the data being shown in all the internal views simultaneously. As is true with View properties, with Display
properties, changing Coloring , Styling, or any other properties will reflect in all internal views.

2.4. Comparative visualization 203

ParaView Users Guide Documentation, Release 5.12.0

Since the cameras among the internal views are automatically linked, if you interact with one of the views, all views
will also update simultaneously when you release the mouse button.

2.4.2 Setting up a parameter study

RenderViewComparativel (0]8]5]x]| (ayout

Crushed can at time: 0.000000 Crushed can at time: 0.001400

@ @eanex2

B AnnotateTimeFilteri |

ces

0]
f
|
|
|
= Dispay (rentSourcenepresentatior | (@] (@]

Crushed can at time: 0.002900 Crushed can at time: 0.004300
O Moo B(B][1](S][=]

o|o 000143333

1/0.00286666 0.00429999

= View (Render View (Comparative)) || @

Fig.2.16: Render View (Comparative) with Annotate Time filter showing the time for each of the views. In this
case, the parameter study is varying Time across the views.

To understand how to setup a parameter study, let’s go back to our original example. Our visualization pipeline is
simply Wavelet — Contour (assuming default property values), and we are showing the result from the Contour
filter in the 2 X 2 Render View (Comparative) with Overlay all comparisons unchecked.

Now, we want to vary the Isosurfaces property value for the visualization in each of the internal views. That’s our
parameter to study. Since that’s a property on the Contour filter, we select the Contour filter instance. Then, its
property Isosurfaces is in the parameter selection combo-boxes. To add the parameter to the study, you must hit the

';I;: button.

The parameter Contourl:Isosurfaces will then show up in the Parameter list above the combo-boxes. You can

delete this parameter by using the % button next to the parameter name.

Did you know?

Notice how this mechanism for setting up a parameter study is similar to how animations are set up. In fact, under the
cover, the two mechanisms are not that different, and they share a lot of implementation code.

Simultaneously, the table widget below the combo-boxes is populated with a default set of values for the Isosurfaces
. This is where you specify the parameter values for each of the views. The location of the views matches the location
in the table. Hence, 0 — A is the top-left view, 0 — B is the second view from the left in the topmost row, and so on. The
parameter value at a specific location in the table is the value used to generate the visualization in the corresponding
view.

204 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

To change the parameter (in our case Isosurfaces) value, you can double click on the cell in the table and change it
one at a time. Also, to make it easier to fill the cells with a range of values, you can click and drag over multiple cells.
When you release the mouse, a dialog will prompt you to enter the data value range (Fig. 2.17). In case you selected
a combination of rows and columns, the dialog will also let you select in which direction the parameter is varied using
the range specified. You can choose to vary the parameter horizontally first, vertically first, or only along one of the
directions while keeping the other constant. This is useful when doing a study with multiple parameters.

Enter Parameter Range

F

to

"i.faryr horizontally first
Vary horizontally first

Vary vertically first

Only vary horizontally
Only vary vertically

Fig. 2.17: Dialog used to select a range of parameter values and control how to vary them in paraview.

As soon as you change the parameter values, the view will update to reflect the change.

2.4.3 Adding annotations

You add annotations like color legends, text, and cube-axes exactly as you would with a regular Render View . As
with other properties, annotations will show up in all of the internal views.

Did you know?

You can use the Annotate Time source or filter to show the data time or the view time in each of the internal views.
If Time is one of the parameters in your study, the text will reflect the time values for each of the individual views, as
expected (Fig. 2.16)!

2.5 Programmable Filter

A pipeline module in ParaView does one of two things: it either generates data or processes input data. To generate
data, the module may use a mathematical model e.g. Sources > Sphere or read a file from disk. Processing data entails
transforming input data by applying defined operations to generate a new output. ParaView provides a large set of
readers, data sources and data filters that cover the needs of many users. For the cases where the available collection
does not satisfy your needs, ParaView provides a mechanism to add new modules via plugins. Conventional plugins,
however, are intended for hardcore developers. They are written in C++, using the data processing APIs provided by
ParaView and VTK. The complexity of building and packaging C++ plugins that work on all distributed versions of
ParaView can be daunting and thus a huge barrier for even advanced ParaView users. Python-based programmable
filters, sources and annotations provide an easy alternative to this. New modules can be written as Python scripts that
are executed by ParaView to generate, process and/or display data, just like conventional C++ modules. Since the
scripts are standard Python scripts, you have access to Python packages such as NumPy that provide several numeric
operations useful for data transformation.

2.5. Programmable Filter 205

ParaView Users Guide Documentation, Release 5.12.0

In this chapter, we will explore how to use Python to add new data processing modules to ParaView through examples.
For additional explanation of the data processing API, see Section 2.6.

Common Errors

In this guide so far, we have been looking at examples of Python scripts for pvpython. These scripts are used to script
the actions you would perform using the paraview Ul The scripts you would write for Programmable Source ,
Programmable Filter, and Programmable Annotation are entirely different. The data processing API executes
within the data processing pipeline and, thus, has access to the data being processed. In client-server mode, this means
that such scripts are indeed executed on the server side, potentially in parallel, across several MPI ranks. Therefore,
attempting to import the paraview.simple Python module in the Programmable Source script, for example, is not
supported and will have unexpected consequences.

2.5.1 Understanding the programmable modules

With programmable modules, you are writing custom code for filters and sources. You are expected to understand the
basics of a VTK (and ParaView) data processing pipeline, including the various stages of the pipeline execution as
well as the data model. Refer to Section 1.3.1 for an overview of the VTK data model. While a detailed discussion of
the VTK pipeline execution model is beyond the scope of this book, the fundamentals covered in this section, along
with the examples in the rest of this chapter, should help you get started and write useful modules. For a primer on the
details of the VTK pipeline execution stages, see [BerkGeveci].

To create the programmable source, filter, or annotation in paraview, you use the Sources > Programmable Source,
Filters > Programmable Filter or Sources > Programmable Annotation menus, respectively. Since the Programmable
Filter and Programmable Annotation are filters, like other filters, they get connected to the currently active
source(s), i.e., the currently active source(s) become the input to this new filter. Programmable Source , on the
other hand, does not have any inputs.

One of the first things that you specify after creating a programmable filter or source is the Output Data Set Type
. This option lets you select the type of dataset this module will produce. The options provided include several of the
data types discussed in Section 1.3.1. Additionally, for the Programmable Filter, you can select Same as Input
to indicate that the filter preserves the input dataset type.

Next is the primary part: the Script . This is where you enter the Python script to generate or process from the inputs
the dataset that the module will produce. As with any Python script, you can import other Python packages and modules
in this script. Just be aware that when running in client-server mode, this script is going to be executed on the server
side. Accordingly, any modules or packages you import must be available on the server side to avoid errors.

The script gets executed in what’s called the RequestData pass of the pipeline execution. This is the pipeline pass in
which an algorithm is expected to produce the output dataset.

There are several other passes in a pipeline’s execution. The ones for which you can specify a Python script to execute
in the programmable filter and source are:

* RequestInformation: In this pass, the algorithm is expected to provide the pipeline with any meta-data available
about the data that will be produced by it. This includes things like number of timesteps in the dataset and their
time values for temporal datasets or extents for structured datasets. This gets called before RequestData pass.
In the RequestData pass, the pipeline could potentially qualify the request based on the meta-data provided in
this pass. For example, if an algorithm announces that the temporal dataset has multiple timesteps, the pipeline
could request that the algorithm produce data for one of those timesteps in RequestData .

* RequestUpdateExtent: In this pass, a filter gets the opportunity to qualify requests for execution passed on to
the upstream pipeline. As an example, if an upstream reader announced in its Requestinformation script that
it can produce several timesteps, in RequestUpdateExtent, this filter can make a request to the upstream reader
for a specific timestep. This pass gets called after RequestInformation, but before RequestData . It’s not very
common to provide a script for this pass.

206 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Properties
o Apply || @ Reset [?
| Search ... (use Esc to clear text) 3E
= Properties (ProgrammableFilterl) | e || &
QOutput Data
Set Type | Same as Input

Script E

Get the first input.
input® = inputs[O]

compute a value.
data = input®.PointData["V"] / 2.0
output.PointData.append(data, "V_half")

|| Copy Arrays
4 Display (UnstructuredGridRepresent: || @ || &
% View (Render View) e | &

Fig. 2.18: Properties panel for Programmable Filter in paraview.

2.5. Programmable Filter 207

ParaView Users Guide Documentation, Release 5.12.0

You can specify the script for the Requestinformation pass in RequestInformation Script and for the RequestUp-
dateExtent pass in RequestUpdateExtent Script. Since the RequestUpdateExtent pass does not make much sense
for an algorithm that does not have any inputs, RequestUpdateExtent Script is not available on Programmable
Source . Programmable Annotation only has a RequestData script as this is the only one that make sense in this
context.

2.5.2 Recipes for Programmable Source

In this section, we look at several recipes for Programmable Source. A common use of Programmable Source is
to prototype readers. If your reader library already provides a Python API, then you can easily import the appropriate
Python package to read your dataset using Programmable Source .

Did you know?

Most of the examples in this chapter use a NumPy-centric API for accessing and creating data arrays. Additionally, you
can use VTK’s Python wrapped API for creating and accessing arrays. However, given the ubiquity of NumPy, there
is rarely any need for using VTK’s API directly.

Reading a CSV file

For this example, we will read in a CSV file to produce a Table (Section 1.3.1) using Programmable Source . We
will use NumPy to do the parsing of the CSV files and pass the arrays read in directly to the pipeline. Note that the
Output DataSet Type must be set to vtkTable .

Code for 'Script’

We will use NumPy to read the csv file.
Refer to NumPy documentation for genfromtxt() for details on
customizing the CSV file parsing.

import numpy as np
assuming data.csv is a CSV file with the 1st row being the names names for
the columns
data = np.genfromtxt('data.csv", dtype=None, names=True, delimiter=",
for name in data.dtype.names:

array = data[name]

, autostrip=True)

You can directly pass a NumPy array to the pipeline.
Since ParaView expects all arrays to be named, you
need to assign it a name in the 'append' call.
output.RowData.append(array, name)

208 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Reading a CSV file series

Building on the example from Section 2.5.2, let’s say we have a series of files that we want to read in as a temporal series.
Recall from Section 2.5.1 that meta-data about data to be produced, including timestep information, is announced in
RequestInformation pass. Hence, for this example, we will need to specify the RequestInformation Script as
well.

As was true earlier, Output DataSet Type must be set to vtkTable . Now, to announce the timesteps, we use the
following as the RequestInformation Script.

Code for 'RequestInformation Script'.

def setOutputTimesteps(algorithm, timesteps):
"helper routine to set timestep information"
executive = algorithm.GetExecutive()
outInfo = executive.GetOutputInformation(0)

outInfo.Remove(executive.TIME_STEPS())
for timestep in timesteps:
outInfo.Append(executive.TIME_STEPS(), timestep)

outInfo.Remove(executive.TIME_RANGE(Q))
outInfo.Append(executive.TIME_RANGE(), timesteps[0])
outInfo.Append(executive.TIME_RANGE(), timesteps[-1])

As an example, let's say we have 4 files in the file series that we
want to say are producing time 0, 10, 20, and 30.
setOutputTimesteps(self, (0, 10, 20, 30))

The Script is similar to earlier, except that we will read a specific CSV file based on which timestep was requested.

Code for 'Script’
def GetUpdateTimestep(algorithm):
"""Returns the requested time value, or None if not present
executive = algorithm.GetExecutive()
outInfo = executive.GetOutputInformation(®)
return outInfo.Get(executive.UPDATE_TIME_STEP()) \
if outInfo.Has(executive.UPDATE_TIME_STEP()) else None

i

This is the requested time-step. This may not be exactly equal to the
timesteps published in RequestInformation(). Your code must handle that
correctly.

req_time = GetUpdateTimestep(self)

Now, use req_time to determine which CSV file to read and read it as before.
Remember req_time need not match the time values put out in

'RequestInformation Script'. Your code need to pick an appropriate file to

read, irrespective.

TODO: Generate the data as you want.

Now mark the timestep produced.
output.GetInformation() .Set(output.DATA_TIME_STEP(), req_time)

2.5. Programmable Filter 209

ParaView Users Guide Documentation, Release 5.12.0

Reading a CSV file with particles

This is similar to Section 2.5.2. Now, however, let’s say the CSV has three columns named X, Y and Z that we want to
treat as point coordinates and produce a vtkPolyData with points instead of a vtkTable . For that, we first ensure
that Output DataSet Type is set to vtkPolyData . Next, we use the following Script :

Code for 'Script’

from vtk.numpy_interface import algorithms as algs
from vtk.numpy_interface import dataset_adapter as dsa
import numpy as np

assuming data.csv is a CSV file with the 1st row being the names names for

the columns

data = np.genfromtxt("/tmp/points.csv"”, dtype=None, names=True, delimiter=',',.
—autostrip=True)

convert the 3 arrays into a single 3 component array for
use as the coordinates for the points.
coordinates = algs.make_vector(data["X"], data["Y"], data["Z"])

create a vtkPoints container to store all the
point coordinates.
pts = vtk.vtkPoints()

numpyTovtkDataArray is needed to called directly to convert the NumPy
to a vtkDataArray which vtkPoints::SetData() expects.
pts.SetData(dsa.numpyTovtkDataArray(coordinates, "Points"))

set the pts on the output.
output.SetPoints(pts)

next, we define the cells i.e. the connectivity for this mesh.
here, we are creating merely a point could, so we'll add
that as a single poly vextex cell.
numPts = pts.GetNumberOfPoints()
ptlds is the list of point ids in this cell
(which is all the points)
ptIds = vtk.vtkIdList()
ptIds.SetNumberOfIds(numPts)
for a in range(numPts):
ptIds.SetId(a, a)

Allocate space for 1 cell.
output.Allocate(l)
output.InsertNextCell (vtk.VTK_POLY_VERTEX, ptIds)

We can also pass all the array read from the CSV
as point data arrays.
for name in data.dtype.names:
array = data[name]
output.PointData.append(array, name)

The thing to note is that this time, we need to define the geometry and topology for the output dataset. Each data type

210 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

has different requirements on how these are specified. For example, for unstructured datasets like vtkUnstructuredGrid
and vtkPolyData, we need to explicitly specify the geometry and all the connectivity information. For vtkImageData,
the geometry is defined using origin, spacing, and extents, and connectivity is implicit.

Reading binary 2D image

This recipe shows how to read raw binary data representing a 3D volume. Since raw binary files don’t encode infor-
mation about the volume extents and data type, we will assume that the extents and data type are known and fixed.

For producing image volumes, you need to provide the information about the structured extents in RequestInformation.
Ensure that the Output Data Set Type is set to vtkImageData .

Code for RequestInformation Script'.

executive = self.GetExecutive()

outInfo = executive.GetOutputInformation(®)

we assume the dimensions are (48, 62, 42).
outInfo.Set(executive.WHOLE_EXTENT(), O, 47, 0, 61, 0, 41)
outInfo.Set(vtk.vtkDataObject.SPACING(), 1, 1, 1)

The Script to read the data can be written as follows.

Code for 'Script’
import numpy as np

read raw binary data.
ensure 'dtype' is set properly.
data = np.fromfile("HeadMRVolume.raw", dtype=np.uint8)

dims = [48, 62, 42]
assert data.shape[0] == dims[0]*dims[1]*dims[2], "dimension mismatch"

output.SetExtent (0, dims[0]-1, O, dims[1]-1, O, dims[2]-1)
output.PointData.append(data, "scalars")
output.PointData.SetActiveScalars("scalars")

Helix source

Here is another polydata source example. This time, we generate the data programmatically.

Code for 'Script’

#This script generates a helix curve.

#This is intended as the script of a Programmable Source'
import math

import numpy as np

from vtk.numpy_interface import algorithms as algs

from vtk.numpy_interface import dataset_adapter as dsa

numPts = 80 # Points along Helix
length = 8.0 # Length of Helix
rounds 3.0 # Number of times around

(continues on next page)

2.5. Programmable Filter 211

ParaView Users Guide Documentation, Release 5.12.0

ParaView 4.2.0-RC1-42-90413724 64-bit

File Edit View Sources Filters Tools Catalyst Macros Help

pEBEROCE 2K KAD>D>ME ml I
|8 = (o scalars P <) [volume JHESsdB 48 [Beea
BEO0RRD O (&) Extract Location [] 90 ¥ OF

Pipeline Browser B [0 Layout #1x | +
8 builtin: T
@ @Programmablesourcel
@ @Outlinel

Properties | information |
Propeties

= Properties (ProgrammableSource1)

Output Data
T VtkimageData
script o

import numpy as np

data = np.fromfile("/h
at

dims

s, 62, 42
data. shape[0] == dims[0] *dins(1]*dins(2]

Script (Requestinformation) o

dve()
toutputInformation(o)
WHOLE_EXTENT(), 0, 47, 0, 6
a0nject. SPACING(), 1, 1, 1)

Renderviewl [m]&]0]x

scalars
« 2.550e+02

—200

Fig. 2.19: Programmable Source used to read HeadMRVolume.raw file available in the VTK data repository.

Compute the point coordinates for the helix.
index = np.arange(®, numPts, dtype=np.int32)
scalars = index * rounds * 2 * math.pi / numPts
x = index * length / numPts;

y = np.sin(scalars)

z np.cos(scalars)

Create a (x,y,z) coordinates array and associate that with
points to pass to the output dataset.

coordinates = algs.make_vector(x, y, z)

pts = vtk.vtkPoints()
pts.SetData(dsa.numpyTovtkDataArray(coordinates, 'Points'))
output.SetPoints(pts)

Add scalars to the output point data.
output.PointData.append(index, 'Index')
output.PointData.append(scalars, 'Scalars')

Next, we need to define the topology i.e.

cell information. This helix will be a single

polyline connecting all the points in order.

ptIds = vtk.vtkIdList()

ptIds.SetNumberOfIds (numPts)

for i in range(numPts):
#Add the points to the line. The first value indicates
#the order of the point on the line. The second value
#1is a reference to a point in a vtkPoints object. Depends
#on the order that Points were added to vtkPoints object.
#Note that this will not be associated with actual points

(continued from previous page)

(continues on next page)

212 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)
#until it is added to a vtkPolyData object which holds a
#vtkPoints object.
ptIds.SetId(i, i)

Allocate the number of 'cells' that will be added. We are just
adding one vtkPolyLine 'cell' to the vtkPolyData object.
output.Allocate(l, 1)

Add the poly line 'cell' to the vtkPolyData object.
output.InsertNextCell (vtk.VTK_POLY_LINE, ptIds)

ParaView 4.2.0-RC1-42-90413724 64-bit

File Edit View Sources Filters Tools Catalyst Macros Help
pEBRLaF 2k KAD> DM Ml I
PEEID - — | (sutace L EE T e Y LK
B9 R OS2 ® Extract Location [} OO & O
» ser

® [o Layout #1x | +
8 builtin: AELECEET:
» @ ProgrammableSourcel

@

Renderviewl [m]8]0]x

Properties | information
Properties B

Rpelete | 2

= Properties (Tube1) c)a]
Scalars index |
Vectors =
Number of Sides [5 |

Scalars
=1.861e+01

% Capping
Radius 0,079 e|
Vary Radius [off Bl
Radius Factor (10 |
Use Default Normal
Default Normal [0 1
= Display (GeometryRepresent: || @
Representation [surface
Coloring
o Scalars
i show s Edit Rescale

styling

Fig. 2.20: Programmable Source output generated using the script in Section 2.5.2. This visualization uses Tube
filter to make the output polyline more prominent.

2.5.3 Recipes for Programmable Filter

One of the differences between the Programmable Source and the Programmable Filter is that the latter expects
at least 1 input. Of course, the code in the Programmable Filter is free to disregard the input entirely and work
exactly as Programmable Source . Programmable Filter is designed to customize data transformations. For
example, it is useful when you want to compute derived quantities using expressions not directly possible with Python
Calculator and Calculator or when you want to use other Python packages or even VTK filters not exposed in
ParaView for processing the inputs.

In this section, we look at various recipes for Programmable Filters.

2.5. Programmable Filter 213

ParaView Users Guide Documentation, Release 5.12.0

Adding a new point/cell data array based on an input array

Python Calculator provides an easy mechanism of computing derived variables. You can also use the
Programmable Filter . Typically, for such cases, ensure that the Output DataSet Type issetto Same as Input

Code for 'Script’

'Inputs' is set to an array with data objects produced by inputs to
this filter.

Get the first input.
input® = inputs[0]

compute a value.
dataArray = input0.PointData["V"] / 2.0

To access cell data, you can use input®.CellData.

'output' is a variable set to the output dataset.
output.PointData.append(dataArray, "V_half")

The thing to note about this code is that it will work as expected even when the input dataset is a composite dataset such
as a Multiblock dataset (Section 1.3.1). Refer to Section 2.6 for details on how this works. There are cases, however,
when you may want to explicitly iterate over blocks in an input multiblock dataset. For that, you can use the following
snippet.

input® = inputs[0]
if input®.IsA("vtkCompositeDataSet"):
iterate over all non-empty blocks in the input
composite dataset, including multiblock and AMR datasets.
for block in input®:
processBlock(block)
else:
processBlock(input®)

Computing tetrahedra volume

This recipe computes the volume for each tetrahedral cell in the input dataset. You can always simply use the Python
Calculator to compute cell volume using the expression volume (inputs[0]). This recipe is provided to illustrate
the APL

Ensure that the output type is set to Same as Input, and this filter assumes the input is an unstructured grid (Section
1.3.1).

Code for 'Script’.
import numpy as np

This filter computes the volume of the tetrahedra in an unstructured mesh.
Note, this is just an illustration and not the most efficient way for

computing cell volume. You should use 'Python Calculator' instead.

input® = inputs[0]

(continues on next page)

214 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

numTets = input®.GetNumber0fCells()

volumeArray = np.empty(numTets, dtype=np.float64)
for i in range(numTets):
cell = input®.GetCell(i)
pl = input0®.GetPoint(cell.GetPointId(0))
p2 = input®.GetPoint(cell.GetPointId(1))
p3 = input0.GetPoint(cell.GetPointId(2))
p4 = input®.GetPoint(cell.GetPointId(3))
volumeArray[i] = vtk.vtkTetra.ComputeVolume(pl,p2,p3,p4)

output.CellData.append(volumeArray, "Volume™)

Labeling common points between two datasets

In this example, the Programmable Filter takes two input datasets: A and B. It outputs dataset B with a new scalar
array that labels the points in B that are also in A. You should select two datasets in the pipeline browser and then apply
the programmable filter.

Code for 'Script’

Get the two inputs

= inputs[0]

inputs[1]

use len(inputs) to determine now many inputs are connected
to this filter.

H* W% WP W
I}

We use numpy.inld to test all which point coordinate components
in B are present in A as well.

maskX = np.inld(B.Points[:,0], A.Points[:,0])

maskY np.inld(B.Points[:,1], A.Points[:,1])

maskZ np.inld(B.Points[:,2], A.Points[:,2])

Combining each component mask, we get the mask for point
itself.
mask = maskX & maskY & maskZ

Now convert it to uint8, since bool arrays
cannot be passed back to the VIK pipeline.
mask = np.asarray(mask, dtype=np.uint8)

Initialize the output and add the labels array

This ShallowCopy is needed since by default the output is

initialized to be a shallow copy of the first input (inputs[0]),
but we want it to be a description of the second input.
output.ShallowCopy(B.VTIKObject)

output.PointData.append(mask, "labels")

Note in the script above the two inputs are defined in an inputs array. The order of elements in this array is determined
by the order the data sources were selected in the Pipeline Browser . Hence, inputs[0] is the first data source

2.5. Programmable Filter 215

ParaView Users Guide Documentation, Release 5.12.0

selected and inputs[1] is the second.

2.5.4 Recipes for Programmable Annotation

The main difference between the programmable annotation and other programmable modules is that output is intended
to be shown as a text representation. The output is expected to be a vtkTable containing a single one-component
string array containing a single tuple. This tuple will be shown as a text representation, similar to the output of the
Text source or the Python Annotation filter.

By default, the Programmable Annotation script already contains all that is needed to create this table, it just need
to be filled up.

Similar to the Programmable Filter, the Programmable Annotation is designed to customize data display. For
example, it is useful when you want to compute derived quantities using expressions not directly possible with Python
Annotation and other annotation filters or when you want to use other Python packages or even VTK filters not
exposed in ParaView for processing the inputs.

In this section, we look at various recipes for Programmable Annotations.
Displaying the humber of cells with a non-zero volume

Python Annotation provides easy mechanism to compute many values on datasets and arrays, but conditional oper-
ation like the one proposed here require the use of a Programmable Annotation.

Code for 'Script’

'Inputs' is set to an array with data objects produced by inputs to
this filter.

Get the first input.
input® = inputs[0]

compute the volume of each cell of the input
vols = volume(input®)

the codepath for composite dataset and non composite dataset can't be shared
with this operation
if input®.IsA("vtkCompositeDataSet"):

create a running sum to iterate over blocks
num = 0;

iterate over blocks
for i in range(size(vols.Arrays)):
count the number of cells with a non-zero volume in this block
and add it to the running sum
num += sum(val > 0 for val in vols.Arrays[i])
else:
non-composite case : just count the number of cells with a non-zero volume
num = sum(val > 0 for val in vols)

standard code to display the result
to = self.GetTableOutput()

(continues on next page)

216 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

arr = vtk.vtkStringArray()
arr.SetName("Text")
arr.SetNumberOfComponents (1)
arr.InsertNextValue(str(num))
to.AddColumn(arr)

Display system and date information

Python Annotation does not provides any mechanism to import Python modules while doing that in a
Programmable Annotation is trivial.

Code for 'Script’

import needed python modules
from datetime import date
import platform

construct the string to display
string = "Date: \n" % date.today()
string += "System: " % platform.platform()

standard code to display the string
to = self.GetTableOutput()

arr = vtk.vtkStringArray()
arr.SetName("Text")
arr.SetNumberOfComponents (1)
arr.InsertNextValue(string)
to.AddColumn(arr)

2.5.5 Python Algorithm

Programmable Source and Programmable Filter are convenient ways to prototype a Python-based data process-
ing module. If you want to distribute such modules, or package them into modules with user interfaces, for example,
then VTKPythonAlgorithmBase -based approach is recommended instead. Here, you write a Python class by sub-
classing VTKPythonAlgorithmBase and implementing methods to do the data processing, just like any other VTK-
based filter or source. Using Python syntactic add-ons called decorators to annotate your class, you can easily expose
the class to ParaView as a filter or a source, and ParaView will automatically add UI widgets to control parameters, etc.

Let’s start with the simple script featured in Fig. 2.18. Here’s the Python script to create a VTKPythonAlgorithmBase
subclass for the same operation.

from vtkmodules.vtkCommonDataModel import vtkDataSet
from vtkmodules.util.vtkAlgorithm import VTKPythonAlgorithmBase
from vtkmodules.numpy_interface import dataset_adapter as dsa

class HalfVFilter (VTKPythonAlgorithmBase):
def __init__(self):
VTKPythonAlgorithmBase.__init__(self)

def RequestData(self, request, inInfo, outInfo):
(continues on next page)

2.5. Programmable Filter 217

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

get the first input.
input® = dsa.WrapDataObject(vtkDataSet.GetData(inInfo[0]))

compute a value.
data = input®.PointDatal["V"] / 2.0

add to output

output = dsa.WrapDataObject(vtkDataSet.GetData(outInfo))
output.ShallowCopy (input®.VTKObject)
output.PointData.append(data, "V_half");

return 1

To expose this filter in ParaView, you have to add decorators to the class definition as follows:

same imports as earlier.

from vtkmodules.vtkCommonDataModel import vtkDataSet

from vtkmodules.util.vtkAlgorithm import VTKPythonAlgorithmBase
from vtkmodules.numpy_interface import dataset_adapter as dsa

new module for ParaView-specific decorators.
from paraview.util.vtkAlgorithm import smproxy, smproperty, smdomain

@smproxy.filter(label="Half-V Filter")
@smproperty.input (name="Input")
class HalfVFilter (VTKPythonAlgorithmBase) :
the rest of the code here is unchanged.
def __init__(self):
VTKPythonAlgorithmBase.__init__(self)

def RequestData(self, request, inInfo, outInfo):
get the first input.
input® = dsa.WrapDataObject(vtkDataSet.GetData(inInfo[0]))

compute a value.
data = input®.PointData["V"] / 2.0

add to output

output = dsa.WrapDataObject(vtkDataSet.GetData(outInfo))
output.ShallowCopy(input0®.VTKObject)
output.PointData.append(data, "V_half");

return 1

To use this new filter, save this to a *.py file, and load it as a plugin using the Plugin Manager from 7ools > Plugin
Manager. On success, you will see a Half-V Filter in the Filters menu.

Besides exposing class as filters, or sources, you can use the decorators to add UI widgets to call methods on the class
to set parameters.

The follow examples adds a new source named Python-based Superquadric Source Example, with Ul to control
various parameters.

to add a source, instead of a filter, use the ‘smproxy.source’ decorator.
@smproxy.source(label="Python-based Superquadric Source Example')

(continues on next page)

218 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

class PythonSuperquadricSource(VIKPythonAlgorithmBase):
"""This is dummy VTKPythonAlgorithmBase subclass that
simply puts out a Superquadric poly data using a vtkSuperquadricSource
internally"""
def __init__(self):
VTKPythonAlgorithmBase.__init__(self,
nInputPorts=0,
nOutputPorts=1,
outputType="vtkPolyData')
from vtkmodules.vtkFiltersSources import vtkSuperquadricSource
self._realAlgorithm = vtkSuperquadricSource()

def RequestData(self, request, inInfo, outInfo):
from vtkmodules.vtkCommonDataModel import vtkPolyData
self._realAlgorithm.Update()
output = vtkPolyData.GetData(outInfo, 0)
output.ShallowCopy(self._realAlgorithm.GetOutput())
return 1

for anything too complex or not yet supported, you can explicitly
provide the XML for the method.
@smproperty.xml ("""
<DoubleVectorProperty name="Center"
number_of_elements="3"
default_values="0 0 0"
command="SetCenter">
<DoubleRangeDomain name="range" />
<Documentation>Set center of the superquadric</Documentation>
</DoubleVectorProperty>""")
def SetCenter(self, x, y, z):
self._realAlgorithm.SetCenter(x,y,z)
self.Modified()

In most cases, one can simply use available decorators.
@smproperty.doublevector(name="Scale", default_values=[1, 1, 1])
@smdomain.doublerange()
def SetScale(self, x, y, z):

self._realAlgorithm.SetScale(x,y,z)

self.Modified()

@smproperty.intvector (name="ThetaResolution", default_values=16)
def SetThetaResolution(self, x):
self._realAlgorithm.SetThetaResolution(x)
self.Modified()

@smproperty.intvector (name="PhiResolution", default_values=16)
@smdomain.intrange (min=0, max=1000)
def SetPhiResolution(self, x):
self._realAlgorithm.SetPhiResolution(x)
self.Modified()

@smproperty.doublevector (name="Thickness", default_values=0.3333)

(continues on next page)

2.5. Programmable Filter 219

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

@smdomain.doublerange(min=1e-24, max=1.0)

def SetThickness(self, x):
self._realAlgorithm.SetThickness(x)
self.Modified()

On loading this script as a plugin and creating the Python-based Superquadric Source Example source, the
Properties panel will be populated as shown in Fig. 2.21.

Properties = 54
Delete ?

= Properties (Pythonbas¢ [@ & &

Reload Python Module
Center 0.000000 ||0.000000 ||/0.000000
Phi Resolution | 16
Scale 1.000000 ||1.000000 |(1.000000
Theta Resolution |15
Thickness —_— 0.333300
% Display (GeometryRepr [O & 4
%° View (Render View) =~ I YR

Fig. 2.21: Properties panel automatically generated from a decorated Python class, PythonSuperquadricSource

The decorators also enable us to add new readers and writers. Here is an example writer that uses NumPy to write
tables as compressed binary arrays.

“smproxy.writer decorator register the module as writer for the provided file
extension.
@smproxy.writer(extensions="npz", file_description="NumPy Compressed Arrays'", support_
—reload=False)
@smproperty.input (name="Input", port_index=0)
this domain lets ParaView know which types of data this writer can write.
@smdomain.datatype(dataTypes=["vtkTable"], composite_data_supported=False)
class NumpyWriter (VTKPythonAlgorithmBase) :
def __init__(self):
VTKPythonAlgorithmBase.__init__(self, nInputPorts=1, nOutputPorts=0, inputType=
— 'vtkTable')
self._filename = None

(continues on next page)

220 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

@smproperty.stringvector(name="FileName", panel_visibility="never")
@smdomain. filelist()
def SetFileName(self, fname):
"""Specify filename for the file to write.
if self._filename != fname:
self._filename = fname
self.Modified()

mirn

def RequestData(self, request, inInfoVec, outInfoVec):
from vtkmodules.vtkCommonDataModel import vtkTable
from vtkmodules.numpy_interface import dataset_adapter as dsa

table = dsa.WrapDataObject(vtkTable.GetData(inInfoVec[0], 0))
kwargs = {}
for aname in table.RowData.keys():

kwargs[aname] = table.RowData[aname]

import numpy
numpy . savez_compressed(self._filename, **kwargs)
return 1

def Write(self):
self.Modified()
self.Update()

2.6 Using NumPy for processing data

In Section 2.5, we looked at several recipes for writing Python script for data processing that relied heavily on using
NumPy for accessing arrays and performing operations on them. In this chapter, we take a closer look at the VTK-
NumPy integration layer that makes it possible to use VTK and NumPy together, despite significant differences in the
data representations between the two systems.

2.6.1 Teaser

Let’s start with a teaser by creating a simple pipeline with Sphere connected to an Elevation filter, followed by the
Programmable Filter . Let’s see how we would access the input data object in the Script for the Programmable
Filter.

from paraview.vtk.numpy_interface import dataset_adapter as dsa
from paraview.vtk.numpy_interface import algorithms as algs

data = inputs[0]
print(data.PointData.keys())
print(data.PointData['Elevation'])

This example prints out the following in the output window.

['Normals', 'Elevation']
[0.67235619 0.32764378 0.72819519 0.7388373 0.70217478 0.62546903

(continues on next page)

2.6. Using NumPy for processing data 221

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

0.52391261 0.41762003 0.75839448 0.79325461 0.77003199 0.69332629
0.57832992 0.44781935 0.72819519 0.7388373 0.70217478 0.62546903
0.52391261 0.41762003 0.65528756 0.60746235 0.53835285 0.46164712
0.39253765 0.34471244 0.58238 0.47608739 0.37453097 0.29782525
0.2611627 0.27180481 0.55218065 0.42167011 0.30667371 0.22996798
0.20674542 0.24160551 0.58238 0.47608739 0.37453097 0.29782525
0.2611627 0.27180481 0.65528756 0.60746235 0.53835285 0.46164712
0.39253765 0.34471244]

The importance lies in the last three lines. In particular, note how we used a different API to access the PointData
and the Elevation array in the last two lines. Also note that, when we printed the Elevation array, the output didn’t
look like one from a vtkDataArray. In fact:

>>> elevation = data.PointData['Elevation']
>>> print(type(elevation))
<class paraview.vtk.numpy_interface.dataset_adapter.VIKArray>

>>> import numpy
>>> print(isinstance(elevation, numpy.ndarray))
True

So, a VTK array is a NumPy array? What kind of trickery is this, you say? What kind of magic makes the following
possible?

data.PointData.append(elevation + 1, 'e plus one')
print(algs.max(elevation))
print(algs.max(data.PointData['e plus one']))
print(data.VTKObject)

The output here is:

0.7932546138763428
1.7932546138763428
vtkPolyData (0x7fa20d011c60)

Point Data:

Number Of Arrays: 3
Array 0 name = Normals
Array 1 name = Elevation
Array 2 name = e plus one

It is all in the numpy_interface module. It ties VTK datasets and data arrays to NumPy arrays and introduces a
number of algorithms that can work on these objects. There is quite a bit to this module, and we will introduce it piece
by piece in the rest of this chapter.

Let’s wrap up this section with one final teaser.

[print(algs .gradient(data.PointData['Elevation']))]

Output:

[[0.32640398 0.32640398 0.01982867]
[0.32640402 0.32640402 0.01982871]

(continues on next page)

222 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

[0.41252578 0.20134845 0.2212007]
[0.41105482 0.21514832 0.0782456 1]

Please note that this example is not very easily replicated by using pure NumPy. The gradient function returns the
gradient of an unstructured grid — a concept that does not exist in NumPy. However, the ease-of-use of NumPy is there.

2.6.2 Understanding the dataset_adapter module
In this section, let’s take a closer look at the dataset_adapter module. This module was designed to simplify
accessing VTK datasets and arrays from Python and to provide a NumPy-style interface.

Let’s continue with the example from the previous section. Remember, this script is being put in the Programmable
Filter ‘s Script, connected to the Sphere , followed by the Elevation filter pipeline.

from vtk.numpy_interface import dataset_adapter as dsa

print(data)
print(isinstance(data, dsa.VTKObjectWrapper))

This will print:

<paraview.vtk.numpy_interface.dataset_adapter.PolyData object at 0x14b7caa50>
True

We can access the underlying VTK object using the VTKObject member:

[print(type(data.VTKObject)) J

which produces:

[<type 'vtkCommonDataModelPython.vtkPolyData'>]

What we get as the $inputs$ in the Programmable Filter is actually a Python object that wraps the VTK data
object itself. The Programmable Filter does this by manually calling the WrapDataObject function from the vtk.
numpy_interface.dataset_adapter module on the VTK data object. Note that the WrapDataObject function will
return an appropriate wrapper class for all vtkDataSet subclasses, vtkTable, and all vtkCompositeData subclasses.
Other vtkDataObject subclasses are not currently supported.

VTKObjectWrapper forwards VTK methods to its VTKObject so the VTK API can be accessed directy as follows:

print(data.GetNumber0fCells())
96L

However, VTKOb jectWrapper s cannot be directly passed to VTK methods as an argument.

from paraview.vtk.vtkFiltersGeneral import vtkShrinkPolyData
s = vtkShrinkPolyData()
s.SetInputData(data)

This attempt to set the data results in an error message.

[TypeError: SetInputData argument 1: method requires a VIK object J

2.6. Using NumPy for processing data 223

ParaView Users Guide Documentation, Release 5.12.0

Instead, we must pass the VTK object to the VTK filter, like so:

[s .SetInputData(data.VTKObject)

An important thing to note in the example above is how the Python class vtkShrinkPolyData was imported for
use in the script. In VTK, classes are organized into different groups of related functionality, and these groups
can be invididually imported as Python modules. To use a class, you first identify the module in which it resides,
which can be determined from the Doxygen documentation of the class [Kitwarelnc]. Go to the Doxygen page for
the class, find the path of the file from which the documentation was generated at the bottom of the page, which
has the form dox/<first directory>/<second directory>/<class name>. The module is then derived as
vtk<first directory><second directory>. As an example, the documentation for vtkShrinkPolyData is
generated from dox/Filters/General/vtkShrinkPolyData, hence its module is vtkFiltersGeneral. Then,
you can import the class with a statement of the form.

Dataset attributes
So far, we have a wrapper for VTK data objects that partially behaves like a VTK data object. This gets a little bit more
interesting when we start looking at how to access the fields (arrays) contained within this dataset.

For simplicity, we will embed the output generated by the script in the code itself and use the >>> prefix to differentiate
the code from the output.

>>> print(data.PointData)
<vtk.numpy_interface.dataset_adapter.DataSetAttributes at 0x110f5b750>

>>> print(data.PointData.keys())
['"Normals', 'Elevation']

>>> print(data.CellData.keys())

[]
>>> print(data.PointData['Elevation'])
VIKArray([0.5 , 0. , 0.45048442, 0.3117449 , 0.11126047,
0. , 0. , 0. , 0.45048442, 0.3117449 ,
0.11126047, O. , 0. , 0. , 0.45048442,
0.11126047, 0. , 0. , 0. , 0.45048442,
0.3117449 , 0.11126047, O. , 0. , 0.], dtype=float32)

>>> elevation = data.PointData['Elevation']

>>> print(elevation[:5])
VIKArray([0.5, 0., 0.45048442, 0©.3117449, 0.11126047], dtype=float32)
Note that this works with composite datasets as well:

>>> mb = vtk.vtkMultiBlockDataSet()

>>> mb.SetNumberOfBlocks(2)

>>> mb.SetBlock(0®, data.VIKObject)

>>> mb.SetBlock(1l, data.VTKObject)

>>> mbw = dsa.WrapDataObject (mb)

>>> print (mbw.PointData)

<vtk.numpy_interface.dataset_adapter.CompositeDataSetAttributes instance at 0x11109f758>

(continues on next page)

224 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

>>> print (mbw.PointData.keys())
['Normals', 'Elevation']

>>> print (mbw.PointData['Elevation'])
<vtk.numpy_interface.dataset_adapter.VTKCompositeDataArray at 0x1110a32d0>

It is possible to access PointData , CellData , FieldData , Points (subclasses of vtkPointSet only), and
Polygons (vtkPolyData only) this way. We will continue to add accessors to more types of arrays through this
APL

2.6.3 Working with arrays

For this section, let’s change our test pipeline to consist of the Wavelet source connected to the Programmable
Filter.

In the Script , we access the RTData point data array as follows:

Code for 'Script'

from paraview.vtk.vtkFiltersGeneral import vtkDataSetTriangleFilter
image = inputs[0]

rtdata = image.PointData['RTData']

Let's transform this data as well, using another VIK filter.
tets = vtkDataSetTriangleFilter()
tets.SetInputDataObject(image.VIKObject)

tets.Update()

Here, now we need to explicitly wrap the output dataset to get a
VIKObjectWrapper instance.

ugrid = dsa.WrapDataObject(tets.GetOutput())

rtdata2 = ugrid.PointData['RTData’]

Here, we created two datasets: an image data (vtkImageData) and an unstructured grid (vtkUnstructuredGrid).
They essentially represent the same data but the unstructured grid is created by tetrahedralizing the image data. So, we
expect the unstructured grid to have the same points but more cells (tetrahedra).

[from paraview.vtk.vtkFiltersGeneral import vtkDataSetTriangleFilter

The array API

numpy_interface array objects behave very similar to NumPy arrays. In fact, arrays from vtkDataSet subclasses are
instances of VTKArray, which is a subclass of numpy .ndarray . Arrays from vtkCompositeDataSet and subclasses
are not NumPy arrays, but they behave very similarly. We will outline the differences in a separate section. Let’s start
with the basics. All of the following work as expected.

As before, for simplicity, we will embed the output generated by the script in the code itself and use the >>> prefix to
differentiate the code from the output.

>>> print(rtdatal[0])
60.763466

(continues on next page)

2.6. Using NumPy for processing data 225

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

>>> print(rtdatal[-1])
57.113735

>>> print(repr(rtdatal[0:10:3]))
VIKArray([60.76346588, 95.53707886, 94.97672272, 108.49817657], dtype=float32)

>>> print(repr(rtdata + 1))
VIKArray([61.76346588, 86.87795258, 73.80931091, ..., 68.51051331,
44.34006882, 58.1137352], dtype=float32)

>>> print(repr(rtdata < 70))
VIKArray([True , False, False, ..., True, True, Truel])

We will cover algorithms later. This is to generate a vector field.
>>> avector = algs.gradient(rtdata)

To demonstrate that avector is really a vector
>>> print(algs.shape(rtdata))
(9261,)

>>> print(algs.shape(avector))
(9261, 3)

>>> print(repr(avector[:, 0]))
VTKArray ([25.69367027, 6.59600449, 5.38400745, ..., -6.58120966,
-5.77147198, 13.19447994])

A few things to note in this example:
* Single component arrays always have the following shape: (n-tuples,) and not (n-tuples, 1)
* Multiple component arrays have the following shape: (n-tuples, n-components)
 Tensor arrays have the following shape: (n-tuples, 3, 3)

* The above holds even for images and other structured data. All arrays have one dimension (1 component arrays),
two dimensions (multi-component arrays), or three dimensions (tensor arrays).

One more cool thing: It is possible to use boolean arrays to index arrays. Thus, the following works very nicely:

>>> print(repr(rtdata[rtdata < 70]))

VIKArray([60.76346588, 66.75043488, 69.19681549, 50.62128448,
64.8801651 , 57.72655106, 49.75050354, 65.05570221,
57.38450241, 69.51113129, 64.24596405, 67.54656982,

61.18143463, 66.61872864, 55.39360428, 67.51051331,
43.34006882, 57.1137352], dtype=float32)

>>> print(repr(avector[avector[:,0] > 10]))
VIKArray([[25.69367027, 9.01253319, 7.51076698],
[13.1944809 , 9.01253128, 7.51076508],
[25.98717642, -4.49800825, 7.80427408],

[12.9009738 , -16.86548471, -7.80427504],

(continues on next page)

226 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

[25.69366837, -3.48665428, -7.51076889],
[13.19447994, -3.48665524, -7.51076794]11)

Algorithms

You can do a lot simply using the array APL. However, things get much more interesting when we start using the
numpy_interface.algorithms module. We introduced it briefly in the previous examples. We will expand on it a
bit more here. For a full list of algorithms, use help(algs) . Here are some self-explanatory examples:

>>> import paraview.vtk.numpy_interface.algorithms as algs

>>> print(repr(algs.sin(rtdata)))

VIKArray([-0.87873501, -0.86987603, -0.52497 y .., —0.99943125,
-0.59898132, 0.53547275], dtype=float32)

>>> print(repr(algs.min(rtdata)))
VTKArray(37.35310363769531)

>>> print(repr(algs.max(avector)))
VTKArray(34.781060218811035)

>>> print(repr(algs.max(avector, axis=0)))
VIKArray ([34.78106022, 29.01940918, 18.34743023])

>>> print(repr(algs.max(avector, axis=1)))
VTKArray ([25.69367027, 9.30603981, 9.88350773, ..., -4.35762835,
-3.78016186, 13.19447994])

If you haven’t used the axis argument before, it is pretty easy. When you don’t pass an axis value, the function is applied
to all values of an array without any consideration for dimensionality. When axis=0 , the function will be applied to
each component of the array independently. When axis=1, the function will be applied to each tuple independently.
Experiment if this is not clear to you. Functions that work this way include sum , min , max , std, and var .

Another interesting and useful function is where the indices of an array are returned where a particular condition occurs.

>>> print(repr(algs.where(rtdata < 40)))

(array([420, 9240]1),)

For vectors, this will also return the component index if an axis is not
defined.

>>> print(repr(algs.where(avector < -29.7)))
(VTKArray([4357, 4797, 4798, 4799, 5239]), VIKArray([1l, 1, 1, 1, 11))

So far, all of the functions that we discussed are directly provided by NumPy. Many of the NumPy ufuncs are included
in the algorithms module. They all work with single arrays and composite data arrays. Algorithms also provide some
functions that behave somewhat differently than their NumPy counterparts. These include cross, dot, inverse, determi-
nant, eigenvalue, eigenvector, etc. See a non-exhaustive list in Section 1.5.9. All of these functions are applied to each
tuple rather than to a whole array/matrix. For example:

>>> amatrix = algs.gradient(avector)

>>> print(repr(algs.determinant (amatrix)))

VIKArray([-1221.2732624 , -648.48272183, -3.55133937, ..., 28.2577152 ,
-629.28507693, -1205.813701631)

2.6. Using NumPy for processing data 227

ParaView Users Guide Documentation, Release 5.12.0

Note that everything above only leveraged per-tuple information and did not rely on the mesh. One of VTK’s biggest
strengths is that its data model supports a large variety of meshes, while its algorithms work generically on all of these
mesh types. The algorithms module exposes some of this functionality. Other functions can be easily implemented by
leveraging existing VTK filters. We used gradient before to generate a vector and a matrix. Here it is again:

>>> avector = algs.gradient(rtdata)
>>> amatrix = algs.gradient(avector)

Functions like this require access to the dataset containing the array and the associated mesh. This is one of the reasons
why we use a subclass of ndarray in dataset_adapter:

>>> print(repr(rtdata.DataSet))
<paraview.vtk.numpy_interface.dataset_adapter.DataSet at 0x11b61e9d0®>

Each array points to the dataset containing it. Functions such as gradient use the mesh and the array together. NumPy
provides a gradient function too, you say. What is so exciting about yours? Well, this:

>>> print(repr(algs.gradient(rtdata2)))

VIKArray([[25.46767712, 8.78654003, 7.28477383],
[6.02292252, 8.99845123, 7.49668884],
[5.23528767, 9.80230141, 8.3005352],

[-6.43249083, -4.27642155, -8.30053616],

[-5.19838905, -3.47257614, -7.49668884],

[13.42047501, -3.26066017, -7.28477287]11)
>>> print(rtdata2.DataSet.GetClassName())
vtkUnstructuredGrid

Gradient and algorithms that require access to a mesh work whether that mesh is a uniform grid, a curvilinear grid, or
an unstructured grid thanks to VTK’s data model. Take a look at various functions in the algorithms module to see all
the cool things that can be accomplished using it. In the remaining sections, we demonstrate how specific problems
can be solved using these modules.

2.6.4 Handling composite datasets

In this section, we take a closer look at composite datasets. For this example, our pipeline is Sphere source, and Cone
source is set as two inputs to the Programmable Filter .

We can create a multiblock dataset in the Programmable Filter ‘s Script as follows:

Let's assume inputs[0] is the output from Sphere and
inputs[1] is the output from Cone.

mb = vtk.vtkMultiBlockDataSet()

mb.SetBlock(®, inputs[0].VTKObject)

mb.SetBlock(1l, inputs[1].VTKObject)

Many of VTK’s algorithms work with composite datasets without any change. For example:

e = vtk.vtkElevationFilter()
e.SetInputData(mb)
e.Update()

mbe = e.GetOutputDataObject(0)
print (mbe.GetClassName())

228 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

This will output vtkMultiBlockDataSet.

Now that we have a composite dataset with a scalar, we can use numpy_interface . As before, for simplicity, we will
embed the output generated by the script in the code itself and use the >>> prefix to differentiate the code from the
output.

>>> from paraview.vtk.numpy_interface import dataset_adapter as dsa

>>> mbw = dsa.WrapDataObject (mbe)

>>> print(repr(mbw.PointData.keys()))

['"Normals', 'Elevation']

>>> elev = mbw.PointData['Elevation']

>>> print(repr(elev))
<paraview.vtk.numpy_interface.dataset_adapter.VIKCompositeDataArray at 0x1189ee410>

Note that the array type is different than we have previously seen (VTKArray). However, it still works the same way.

>>> from paraview.vtk.numpy_interface import algorithms as algs
>>> print(algs.max(elev))

0.5

>>> print(algs.max(elev + 1))

1.5

You can individually access the arrays of each block as follows.

>>> print(repr(elev.Arrays[0]))

VIKArray([0.5 , 0. , 0.45048442, 0.3117449 , 0.11126047,
0. , 0. , 0. , 0.45048442, 0.3117449 ,
0.11126047, 0. , 0. , 0 , 0.45048442,
0.3117449 , 0.11126047, O. , 0 , 0]
0.45048442, 0.3117449 , 0.11126047, 0. , 0.]
0. , 0.45048442, 0.3117449 , 0.11126047, O. ;
0. , 0. , 0.45048442, 0.3117449 , 0.11126047,
0. ;W ;O , 0.45048442, 0.3117449 ,
0.11126047, 0. , 0. , 0 , 0.45048442,
0.3117449 , 0.11126047, 0. , 0 , © 1, dtype=float32)

Note that indexing is slightly different.

>>> print(elev[0:3])
[VIKArray([0.5, 0., 0.45048442], dtype=float32),
VIKArray([0., 0., 0.43301269], dtype=float32)]

The return value is a composite array consisting of two VTKArrays. The [] operator simply returned the first four
values of each array. In general, all indexing operations apply to each VTKArray in the composite array collection. It
is similar for algorithms, where:

>>> print(algs.where(elev < 0.5))

[(array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 491),),
(array([®, 1, 2, 3, 4, 5, 6]1),)]

Now, let’s look at the other array called Normals.

2.6. Using NumPy for processing data 229

ParaView Users Guide Documentation, Release 5.12.0

>>> normals = mbw.PointDatal 'Normals']
>>> print(repr(normals.Arrays[0]))
VIKArray([[0.00000000e+00, 0.00000000e+00, 1.00000000e+00],

[0.00000000e+00, 0.00000000e+00, -1.00000000e+00],
[4.33883727e-01, 0.00000000e+00, 9.00968850e-01],
[7.81831503e-01, 0.00000000e+00, 6.23489797e-01],
[9.74927902e-01, 0.00000000e+00, 2.22520933e-01],
[6.89378142e-01, -6.89378142e-01, 2.22520933e-01],
[6.89378142e-01, -6.89378142e-01, -2.22520933e-01],
[5.52838326e-01, -5.52838326e-01, -6.23489797e-01],

[3.06802124e-01, -3.06802124e-01, -9.00968850e-01]], dtype=float32)
>>> print(repr(normals.Arrays[1]))
<paraview.vtk.numpy_interface.dataset_adapter.VIKNoneArray at 0x1189e7790>

Notice how the second array is a VIKNoneArray . This is because vtkConeSource does not produce normals. Where
an array does not exist, we use a VTKNoneArray as placeholder. This allows us to maintain a one-to-one mapping
between datasets of a composite dataset and the arrays in the VTKCompositeDataArray. It also allows us to keep
algorithms working in parallel without a lot of specialized code.

Where many of the algorithms apply independently to each array in a collection, some algorithms are global. Take min
and max , for example, as we demonstrated above. It is sometimes useful to get per-block answers. For this, you can
use _per_block algorithms.

>>> print(algs.max_per_block(elev))
[0.5, 0.4330127]

These work very nicely together with other operations. For example, here is how we can normalize the elevation values
in each block.

>>> _min = algs.min_per_block(elev)

>>> _max = algs.max_per_block(elev)

>>> _norm = (elev - _min) / (_max - _min)
>>> print(algs.min(_norm))

0.0

>>> print(algs.max(_norm))

1.0

Once you grasp these features, you should be able to use composite arrays very similarly to single arrays.

A final note on composite datasets: The composite data wrapper provided by numpy_interface.dataset_adapter
offers a few convenience functions to traverse composite datasets. Here is a simple example:

>>> for ds in mbw:

>>> print(type(ds))

<class 'paraview.vtk.numpy_interface.dataset_adapter.PolyData'>
<class 'paraview.vtk.numpy_interface.dataset_adapter.PolyData'>

230 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

2.7 Remote and parallel visualization

One of the goals of the ParaView application is enabling data analysis and visualization for large datasets. ParaView
was born out of the need for visualizing simulation results from simulations run on supercomputing resources that are
often too big for a single desktop machine to handle. To enable interactive visualization of such datasets, ParaView
uses remote and/or parallel data processing. The basic concept is that if a dataset cannot fit on a desktop machine due
to memory or other limitations, we can split the dataset among a cluster of machines, driven from your desktop. In this
chapter, we will look at the basics of remote and parallel data processing using ParaView. For information on setting
up clusters, please refer to the ParaView Wiki [ThePCommunity].

Did you know?

Remote and parallel processing are often used together, but they refer to different concepts, and it is possible to have
one without the other.

In the case of ParaView, remote processing refers to the concept of having a client, typically paraview or pvpython,
connecting to a pvserver, which could be running on a different, remote machine. All the data processing and,
potentially, the rendering can happen on the pvserver. The client drives the visualization process by building the
visualization pipeline and viewing the generated results.

Parallel processing refers to a concept where instead of single core — which we call a rank — processing the entire
dataset, we split the dataset among multiple ranks. Typically, an instance of pvserver runs in parallel on more than
one rank. If a client is connected to a server that runs in parallel, we are using both remote and parallel processing.

In the case of pvbatch, we have an application that operates in parallel but without a client connection. This is a case
of parallel processing without remote processing.

2.7.1 Understanding remote processing

Let’s consider a simple use-case. Let’s say you have two computers, one located at your office and another in your
home. The one at the office is a nicer, beefier machine with larger memory and computing capabilities than the one
at home. That being the case, you often run your simulations on the office machine, storing the resulting files on the
disk attached to your office machine. When you’re at work, to visualize those results, you simply launch paraview
and open the data file(s). Now, what if you need to do the visualization and data analysis from home? You have several
options:

* You can copy the data files over to your home machine and then use paraview to visualize them. This is tedious,
however, as you not only have to constantly keep copying/updating your files manually, but your machine has
poorer performance due to the decreased compute capabilities and memory available on it!

* You can use a desktop sharing system like Remote Desktop or VNC, but those can be flaky depending on your
network connection.

Alternatively, you can use ParaView’s remote processing capabilities. The concept is fairly simple. You have two
separate processes: pvserver (which runs on your work machine) and a paraview client (which runs on your home
machine). They communicate with each other over sockets (over an SSH tunnel, if needed). As far as using paraview
in this mode, it’s no different than how we have been using it so far — you create pipelines and then look at the data
produced by those pipelines in views and so on. The pipelines themselves, however, are created remotely on the
pvserver process. Thus, the pipelines have access to the disks on your work machine. The Open File dialog will
in fact browse the file system on your work machine, i.e., the machine on which pvserver is running. Any filters that
you create in your visualization pipeline execute on the pvserver.

While all the data processing happens on the pvserver, when it comes to rendering, paraview can be configured to
either do the rendering on the server process and deliver only images to the client (remote rendering) or to deliver the
geometries to be rendered to the client and let it do the rendering locally (local rendering). When remote rendering,

2.7. Remote and parallel visualization 231

ParaView Users Guide Documentation, Release 5.12.0

you’ll be using the graphics capabilities on your work machine (the machine running the pvserver). Every time
a new rendering needs to be obtained (for example, when pipeline parameters are changed or you interact with the
camera, etc.), the pvserver process will re-render a new image and deliver that to the client. When local rendering,
the geometries to be rendered are delivered to the client and the client renders those locally. Thus, not all interactions
require server-side processing. Only when the visualization pipeline is updated does the server need to deliver updated
geometries to the client.

2.7.2 Remote visualization in paraview

Starting a remote server

To begin using ParaView for remote data processing and visualization, we must first start the server application
pvserver on the remote system. To do this, connect to your remote system using a shell and run:

[> pvserver]

You will see this startup message on the terminal:

Waiting for client...
Connection URL: cs://myhost:11111
Accepting connection(s): myhost:11111

This means that the server has started and is listening for a connection from a client.

Configuring a server connection

To connect to this server with the paraview client, select File > Connect or click the icon in the toolbar to bring up
the Choose Server Configuration dialog.

il X
Configuration Server [2]
esre/blacklight pse.teragrid.org

pat csM0.171.2.221:11111 k

localhost-rs cdsrs:/flocalhost:11111/localhost22221

localhost-reverse esrelocalhost11111

localhost-2-procs csflocalhost:11111

localhost csiflocalhost:11111

kraken (PSC) csrei/kraken ‘]
Add Server Edit Server Delete Server
Load Servers Save Servers Fetch Servers l

Connect Close

Fig. 2.22: The Choose Server Configuration dialog is used to connect to a server.

Common Errors

232 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

If your server is behind a firewall and you are attempting to connect to it from outside the firewall, the connection may
not be established successfully. You may also try reverse connections (Section 2.7.4) as a workaround for firewalls.
Please consult your network manager if you have network connection problems.

Figure Fig. 2.22 shows the Choose Server Configuration dialog with a number of entries for remote servers. In
the figure, a number of servers have already been configured, but when you first open this dialog, this list will be empty.
Before you can connect to a remote server, you will need to add an entry to the list by clicking on the Add Server
button. When you do, you will see the Edit Server Configuration dialog as in Figure Fig. 2.23.

. Lo L ¥ Edit Server Configuration
Mame Ky Remate Server
Server Type Client | Sarver ﬁ
Host PR TE, SErnEr COm
Port 1111 -

P o
Configure Cance

Fig. 2.23: The Edit Server Configuration dialog is used to configure settings for connecting to remote servers.

You will need to set a name for the connection, the server type, the DNS name of the host on which you just started the
server, and the port. The default Server Type is set to Client / Server, which means that the server will be listening
for an incoming connection from the client. There are several other options for this setting that we will discuss later.

When you are done, click the Configure button. Another dialog, as shown in Fig. 2.24, will appear where you specify
how to start the server. Since we started the server manually, we will leave the Startup Type on the default Manual
setting. You can optionally set the Startup Type to Command and specify an external shell command to launch a
Server process.

When you click the Save button, this particular server configuration will be saved for future use. You can go back and
edit the server configuration by selecting the entry in the list of servers and clicking the Edit Server button in the
Choose Server Configuration dialog. You can delete it by clicking the Delete button.

Server configurations can be imported and exported through the Choose Server Configuration dialog. Use the
Load Servers button to load a server configuration file and the Save Servers button to save a server configuration
file. Files can be exchanged with others to access the same remote servers.

Did you know?

Visualization centers can provide system-wide server configurations on web servers to allow non-experts to simply
select an already configured ParaView server. These site-wide settings can be loaded with the Fetch Servers button.
Advanced users may also want to specify their own servers in more details. These features are provided thanks to
ParaView Server Configuration files (Section 2.7.5).

2.7. Remote and parallel visualization 233

ParaView Users Guide Documentation, Release 5.12.0

] Edit Server Launch Configuration x

Configure server foobar (cs:/ffoobar)
Please configure the startup procedure to be used when connecting to this server:

Startup Type: M

Manual Startup - no attempt will be made to start the server. You must start the
server manually before trying to connect.

@ Cancel| | # Save

Fig. 2.24: Configure the server manually. It must be started outside of ParaView.

Connect to the remote server

To connect to the server, select the server configuration you just set up from the configuration list, modify the timeout
in the timeout combo box if needed and click Connect. ParaView will try to connect to the server until it succeed or
timeout is reached. In that case, you can just retry as needed. Once the connection steps succeed, we are now connected
and ready to build the visualization pipelines.

Common Errors

ParaView does not perform any kind of authentication when clients attempt to connect to a server. For that reason, we
recommend that you do not run pvserver on a computing resource that is open to the outside world.

ParaView also does not encrypt data sent between the client and server. If your data is sensitive, please ensure that
proper network security measures have been taken. The typical approach is to use an SSH tunnel within your server
configuration files using native SSH support (Section 2.7.5).

Managing multiple clients

pvserver can be configured to accept connections from multiple clients at the same time. In this case only one, called
the master, can interact with the pipeline. Others clients are only allowed to visualize the data. The Collaboration
Panel shares information between connected clients.

To enable this mode, pvserver must be started with the --multi-clients flag:

[pvserver --multi-clients }

If your remote server is accessible from many users, you may want to restrict the access. This can be done with a
connect id. If your client does not have the same connect-id as the server you want to connect to, you will be prompted
for a connect-id. Then, if you are the master, you can change the connect-id in the Collaboration Panel.

234 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Note that initial value for connect-id can be set by starting the pvserver (and respectively paraview) with the
--connect-id flag, for instance:

[pvserver --connect-id=147 J

The master client can also disable further connections in the Collaboration Panel so you can work alone, for
instance. Once you are ready, you may allow other people to connect to the pvserver to share a visualization. This is
the default feature when pvserver is started with --multi-clients --disable-further-connections.

Setting up a client/server visualization pipeline
Using paraview when connected to a remote server is not any different than when it’s being used in the default stand-
alone mode. The only difference, as far as the user interface goes, is that the Pipeline Browser reflects the name

of the server to which you are connected. The address of the server connection next to the icon changes from
builtinto cs://myhost:11111.

Since the data processing pipelines are executing on the server side, all file I/O also happens on the server side. Hence,
the Open File dialog, when opening a new data file, will browse the file system local to the pvserver executable and
not the paraview client.

2.7.3 Remote visualization in pvpython

The pvpython executable can be used by itself for visualization of local data, but it can also act as a client that connects
to a remote pvserver. Before creating a pipeline in pvpython, use the Connect function:

Connect to remote server "myhost" on the default port, 11111

>>> Connect("myhost") # Connect to remote server "myhost" on a
specified port

>>> Connect("myhost", 11111)

Now, when new sources are created, the data produced by the sources will reside on the server. In the case of pvpython,
all data remains on the server and images are generated on the server too. Images are sent to the client for display or
for saving to the local filesystem.

2.7.4 Reverse connections

It is frequently the case that remote computing resources are located behind a network firewall, making it difficult to
connect a client outside the firewall to a server behind it. ParaView provides a way to set up a reverse connection that
reverses the usual client server roles when establishing a connection.

To use a remote connection, two steps must be performed. First, in paraview, a new connection must be config-
ured with the connection type set to reverse. To do this, open the Choose Server Configuration dialog through
the File > Connect menu item. Add a new connection, setting the Name to myhost (reverse)'', and select
""Client / Server (reverse connection) for Server Type . Click Configure . In the Edit Server
Launch Configuration dialog that comes up, set the Startup Type to Manual . Save the configuration. Next,
select this configuration and click Connect . A message window will appear showing that the client is awaiting a
connection from the server.

Second, pvserver must be started with the --reverse-connection (-rc) flag. To tell pvserver the name of the
client, set the --client-host (-ch) command-line argument to the hostname of the machine on which the paraview
client is running. You can specify a port with the --server-port (-sp) command-line argument.

2.7. Remote and parallel visualization 235

ParaView Users Guide Documentation, Release 5.12.0

 Waiting for Server Connection

Establishing connection to 'localhost (reverse)’
Waiting for server to connect.

Fig. 2.25: Message window showing that the client is awaiting a connection from a server.

[pvserver -rc --client-host=mylocalhost --server-port=11111]

When the server starts, it prints a message indicating the success or failure of connecting to the client. When the
connection is successful, you will see the following text in the shell:

Connecting to client (reverse connection requested)...
Connection URL: csrc://mylocalhost:11111
Client connected.

To wait for reverse connections from a pvserver in pvpython, you use ReverseConnect instead of Connect .

To wait for connections from a 'pvserver' on the default port 11111
>>> ReverseConnect ()

Optionally, you can specify the port number as the argument.
>>> ReverseConnect(11111)

2.7.5 ParaView Server Configuration Files
In the Choose Server Configuration dialog, itis possible to Load Servers and Save Servers using the dedi-
cated buttons. Server configurations are stored in ParView Server Configuration files (.pvsc).

These files make it possible to extensively customize the server connection process. During startup, ParaView looks at
several locations for server configurations to load by default.

¢ On Unix-based systems and macOS

— default_servers.pvsc in the ParaView executable directory (you can do a 1ls -1 /proc/
<paraview PID here>/exe to identify the executable directory)

— /usr/share/ParaView/servers.pvsc

— $HOME/.config/ParaView/servers.pvsc (ParaView will save user defined servers here)
* On Windows

— default_servers.pvsc in the ParaView executable directory

— %COMMON_APPDATA%\ParaView\servers.pvsc

— %APPDATA%\ParaView\servers.pvsc (ParaView will save user defined servers here)

Here are a few examples of some common use-cases.

236 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Case One: Simple command server startup

In this use-case, we are connecting to a locally started pvserver (localhost) on the 11111 port, except that the com-
mand to start the server will be automatically called just before connecting to the server, we will wait for timeout
seconds before aborting the connection.

<Server name="case01" resource="cs://localhost:11111" timeout="10">
<CommandStartup>
<Command process_wait="0" delay="5" exec="/path/to/pvserver"/>
</CommandStartup>
</Server>

Here, CommandStartup element specify that a command will be run before connecting to the server. The Command
element contains the details about this command, which includes process_wait, the time in seconds that paraview
will wait for the process to start, delay, the time in seconds paraview will wait after running the command to try to
connect and finally, exec, which is the command that will be run and usually contains the path to pvserver but could
also contain a mpi command to start pvserver distributed or to any script or executable on the localhost filesystem.

Case Two: Simple remote server connection

In this use-case, we are setting a configuration for a simple server connection (to a pvserver processes) running on a
node named “amber1”, at port 20234. The pvserver process will be started manually by the user.

<Server name='"case02" resource='"cs://amberl:20234">
<ManualStartup/>
</Server>

Here, name specify the name of the server as it will appear in the pipeline browser, resource identifies the type if
the connection (cs — implying client-server), host name and port. If the port number i.e. :20234 part is not specified
in the resource, then the default port number (which is 11111) is assumed. Since the user starts pvserver processes
manually, we use ManualStartup.

Case Three: Server connection with user-specified port

This is the same as case two except that we want to ask the user each time the port number to connect to the pvserver
at.

<Server name="case03" resource="cs://amberl">
<ManualStartup>
<Options>
<Option name="PV_SERVER _PORT" label="Server Port: ">
<Range type="int" min="1" max="65535" step="1" default="11111" />
</Option>
</Options>
</ManualStartup>
</Server>

Here the only difference is the Options element. This element is used to specify run-time options that the user specifies
when connecting to the server, see this section for a list of available run-time options. In this case, we want to show the
user an integral spin-box to select the port number, hence we use the Range element to specify the type of the option.
When the user connects to this server, he is shown a dialog similarly to the following image:

2.7. Remote and parallel visualization 237

ParaView Users Guide Documentation, Release 5.12.0

Server Port: 11111 |2

ok || X cancel

Case Four: Simple connection to a data-server/render-server

This is the same as case two, except that instead of a single server (i.e. pvserver), we are connecting to a separate
render-server/data-server with pvdataserver running on port 20230 on amberl and pvrenderserver running port
20233 on node amber?2.

<Server name='"case04" resource="cdsrs://amberl:20230//amber2:20233">
<ManualStartup />
</Server>

The only difference with case two, is the resource specification. cdsrs indicates that it is a client-dataserver-
renderserver configuration. The first host :port pair is the dataserver while the second one is the render server.

Case Five: Connection to a data-server/render-server with user specified server port

This is a combination of case three and case four, where we want to ask the user for the port number for both the render
server and the data server.

<Server name="case05" resource="cdsrs://localhost//localhost">
<ManualStartup>
<Options>
<Option name="PV_DATA_SERVER_PORT" label="Data Server Port: ">
<Range type="int" min="1" max="65535" step="1" default="11111" />
</Option>
<Option name="PV_RENDER_SERVER_PORT" label="Render Server Port: ">
<Range type="int" min="1" max="65535" step="1" default="22222" />
</Option>
</Options>
</ManualStartup>
</Server>

The XML is quite self-explanatory given what we has already been explained above. The options dialog produced by
this XML looks as follows:

Data Server Port: 11111 2

Render Server Port: (22222 2

oK | X cancel

238 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Case Six: Reverse Connection

By default the client connects to the server processes. However it is possible to tell the paraview client to wait for the
server to connect to it instead. This is called a reverse connection. In such a case the server processes must be started
with --reverse-connection or --rc flag.

To indicate reverse connection in the server configuration xml, the only change is suffixing the resource protocol part
with rc (for reverse connection). eg.

resource="csrc://localhost" -- connect to pvserver on localhost using reverse connection
resource="cdsrsrc://localhost//localhost” -- connect to pvdataserver/pvrenderserver,,
—,using reverse connection.

So a simple local reverse connection server configuration, similarly to case one, would look like this

<Server name="case06" resource="csrc://localhost:11111">
<CommandStartup>
<Command exec="/path/to/pvserver --reverse-connection --client-host=localhost"/>
</CommandStartup>
</Server>

Here the --client-host=1ocalhost in the exec is actually not needed has this is the default.

Case Seven: Server command with option

As we have seen in case one, the server can be started by ParaView on connection, but this can be combined with the
Option element as seen in case three to create a dynamically generated server command.

<Server name='"case07" resource="cs://localhost">
<CommandStartup>
<Options>
<!-- The user chooses the port on which to start the server -->
<Option name="PV_SERVER_PORT" label="Server Port: ">
<Range type="int" min="1" max="65535" step="1" default="11111" />
</Option>
</Options>
<Command delay="5" exec="/path/to/pvserver">
<Arguments>
<Argument value="--server-port=PV_SERVER_PORT" />
</Arguments>
</Command>
</CommandStartup>
</Server>

As with case one, we are using CommandStartup and Command elements. Command line arguments can be passed
to the command executed using the Arguments element. All runtime environment variables specified as $name$ are
replaced with the actual values. Eg. in this case PV_SERVER_PORT gets replaced by the port number chosen by the
user in the options dialog.

2.7. Remote and parallel visualization 239

ParaView Users Guide Documentation, Release 5.12.0

Case Eight: Using connection-id and random port

In many cases, a server cluster may be running multiple pvserver (or pvdataserver/pvrenderserver) processes for dif-
ferent users. In that case we need some level of authentication between the server and the client. This can be achieved
(at a very basic level) with the connect-id option. If specified on the command line when starting the server processes
(using --connect-id) then the server will allow only that client which reports the same connection id to connect.

We also want to avoid port collision with other users, so we use a random port for the server connection.

Here is an example similarly to case seven but with a connect-id option and random server port.

<Server name="case08" resource="cs://localhost">
<CommandStartup>
<Options>
<Option name="PV_CONNECT_ID" label="Connect ID" readonly="true">
<Range type="int" min="1" max="65535" default="random" />
</Option>
<Option name="PV_SERVER_PORT" label="Server Port" readonly="true">
<Range type="int" min="11111" max="65535" default="random" />
</Option>
</Options>
<Command exec="/path/to/pvserver" delay="5">
<Arguments>
<Argument value="--connect-id=$PV_CONNECT_IDS$" />
<Argument value="--server-port=PV_SERVER_PORT" />
</Arguments>
</Command>
</CommandStartup>
</Server>

In this case, the readonly attribute on the Option indicates that the value cannot be changed by the user, it is only
shown for information purposes. The default value for the PV_CONNECT_ID and PV_SERVER_PORT is set to random so
that ParaView makes up a value at run time. Of course, in a production environnement they should be assigned by user
instead of randomly generated.

Connect ID

Server Port

oK || X cancel

Case Nine: Starting server using ssh

In this use case the server process is spawned on some remote host using specifically crafted ssh command. We want
the user to be able to specify the ssh executable. We also want to preserve the ssh executable path across ParaView
sessions so that the user does not have to enter it each time.

<Server name='"case09" resource="cs://localhost:11111">

<CommandStartup>
<Options>
<Option name="SSH_USER" label="SSH Username" save="true'">
<!-- choose the username. Since 'save' is true, this value will

be maintained across sessions -->
(continues on next page)

240 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

<String default="user" />

</Option>
<Option name="SSH_EXE" label="SSH Executable" save="true'">
<!-- select the SSH executable. Since 'save' is true, this value will

also be maintinaed across sessions -->
<File default="ssh" />
</Option>
</Options>
<Command exec="SSH_EXES" delay="5">
<Arguments>
<Argument value="-L8080:amber5:11111" /> <!-- port forwarding -->
<Argument value="amber5" />
<Argument value="-1" />
<Argument value="SSH_USER" />
<Argument value="/path/to/pvserver" />
</Arguments>
</Command>
</CommandStartup>
</Server>

SSH Username |user

SSH Executable |ssh

oK || X cancel

Note here that the value for the exec attribute is set to SSH_EXE hence it gets replaced by the user selected ssh
executable. We use the optional attribute save on the Option element to tell ParaView to preserve the user chosen
value across ParaView sessions so that the user doesn’t have to enter the username and the ssh executable every time
he wants to connect to this server.

Did you know?

While SSH connection can be started by crafting the command, ParaView now support SSH connection natively by
specyfing a SSHCommand, see below for more information.

Case Ten: Starting server using custom script with custom user-settable options

This example will illustrate the full capability of server configuration. Suppose we have a custom script “MyServer-
Starter” that takes in multiple arguments to start the server process. We want the user to be able to set up values for
these arguments when he tries to connect to using this configuration. As an example, let’s say MyServerStarter takes
the following arguments:

* ——force-offscreen-rendering — to indicate use of offscreen rendering

* --force-onscreen-rendering — to indicate on-screen rendering (this can be assumed from absence of
--force-offscreen-rendering, but we are using it as an example)

e --session-name=<string> — some string identifying the session
e —-mpitype=<mpichl.2|mpich2|openmpi> — choose between available MPI implementations

¢* —--num-procs=<num> — number of server processess

2.7. Remote and parallel visualization 241

ParaView Users Guide Documentation, Release 5.12.0

* --server-port — port number passed the pvserver processes

All (except the —server-port) of these must be settable by the user at the connection time. This can be achieved as
follows:

<Server name='"casel®" resource="cs://localhost">

<CommandStartup>
<Options>
<Option name="OFFSCREEN" label="Use offscreen rendering">
<Boolean true="--use-offscreen" false="--use-onscreen" default="false" />
</Option>

<Option name="SESSIONID" label="Session Identifier">
<String default="session®1"/>
</Option>
<Option name="MPITYPE" label="MPI Implementation'>
<Enumeration default="mpichl.2">
<Entry value="mpichl.2" label="MPICH Ver. 1.2" />
<Entry value="mpich2" label="MPICH Ver 2.0" />
<Entry value="openmpi" label="Open MPI" />
</Enumeration>
</Option>
<Option name="NUMPROC" label="Number Of Processes'">
<Range type="int" min="1" max="256" step="4" default="1" />
</Option>
</Options>
<Command exec="/path/to/MyServerStarter" delay="5">
<Arguments>
<Argument value="--server-port=PV_SERVER_PORTS" />
<Argument value="--mpitype=$MPITYPES" />
<Argument value="--num-procs=$NUMPROC$" />
<Argument value="$0OFFSCREENS$" />
<Argument value="--session-name=$SESSIONID$" />
</Arguments>
</Command>
</CommandStartup>
</Server>

Each Option defines a new run-time variable that can be accessed as ${name}$ in the Command section. When the
user tries to connect using this configuration, he is shown the following options dialog:

Use offscreen rendering
Session Identifier session01

MPI Implementation MPICH Ver. 1.2~

-

Number Of Processes 1

X Cancel

This can be extended to start the server processes using ssh or any batch scheduler etc. as may be the required by
the server administrator. This can also be set up to use reverse connection (by changing the protocol in the resource
attribute).

242 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Case Eleven: Case Ten + Switch Statement

This is same as case ten with one change: We no longer allow the user to choose the number of processes. Instead, the
number of processes is automatically selected based on the value of the distribution combobox.

<Server name="casell" resource="cs://localhost">

<CommandStartup>
<Options>
<Option name="OFFSCREEN" label="Use offscreen rendering'">
<Boolean true="--use-offscreen" false="--use-onscreen" default="false" />
</Option>

<Option name="SESSIONID" label="Session Identifier">
<String default="session®1"/>
</Option>
<Option name="MPITYPE" label="MPI Implementation'>
<Enumeration default="mpichl.2">
<Entry value="mpichl.2" label="MPICH Ver. 1.2" />
<Entry value="mpich2" label="MPICH Ver 2.0" />
<Entry value="openmpi" label="Open MPI" />
</Enumeration>
</Option>
<Option name="DISTRIBUTION" label="Distribution Mode">
<Enumeration default="notDistributed">
<Entry value="notDistributed" label="Not Distributed" />
<Entry value="someDistribution" label="Some Distribution" />
<Entry value="highDistribution" label="Highly Distributed" />
</Enumeration>
</Option>
<Switch name="DISTRIBUTION">
<Case value="notDistributed">
<Set name="NUMPROC" value="1" />
</Case>
<Case value="someDistribution'">
<Set name="NUMPROC" value="2" />
</Case>
<Case value="highDistribution'">
<Set name="NUMPROC" value="10" />
</Case>
</Switch>
</Options>
<Command exec="/path/to/MyServerStarter" delay="5">
<Arguments>
<Argument value="--server-port=PV_SERVER_PORTS" />
<Argument value="--mpitype=$MPITYPES$" />
<Argument value="--num-procs=$NUMPROC$" />
<Argument value="$0OFFSCREENS$" />
<Argument value="--session-name=$SESSIONID$" />
</Arguments>
</Command>
</CommandStartup>
</Server>

The Switch statement can only have Case statements as children, while the Case statement can only have Set state-
ments as children. Set statements are not much different from Option except that the value is fixed and the user is not

2.7. Remote and parallel visualization 243

ParaView Users Guide Documentation, Release 5.12.0

Use offscreen rendering
Session Identifier session01
MPI Implementation MPICH Ver. 1.2 ~

Parallelism Mode No Parallelism -

oK | X cancel

prompted to set that value.

Case Twelve: Simple SSH run server command
If Command element let you craft SSH commands, it can be quite complex to do so and the pipeline browser in ParaView
may not show the correct server as it could connect through a ssh tunnel.

Here, similarly to case one, we use native ssh support to start a pvserver process remotely, on amberl, before connecting
to it directly on the default port:

<Server name='"casel2" resource="cs://amberl">
<CommandStartup>
<SSHCommand exec="/path/to/pvserver" delay="5">
<SSHConfig user="user"/>
</SSHCommand>
</CommandStartup>
</Server>

First SSHCommand element is used instead of Command so that ParaView knows to use native ssh support. Then the
SSHConfig element is used to configure the ssh connection. The user attribute is the SSH user to use with SSH. If a
password is needed, it will be asked on the terminal used to run ParaView, which may not be visible in certain cases.

Case Thirteen: SSH run server command with complex config

Here, similarly to case twelve, we use native ssh support to start a pvserver process remotely, on amber1, before con-
necting to it directly, but we specify much more specifically the configuration to use.

<Server name="casel3" resource="cs://amberl">
<CommandStartup>
<Options>
<!-- The user chooses the port on which to start the server -->
<Option name="PV_SERVER_PORT" label="Server Port: ">
<Range type="int" min="1" max="65535" step="1" default="11111" />
</Option>
</Options>
<SSHCommand exec="/path/to/pvserver" delay="5">
<SSHConfig user="user">
<Terminal exec="/usr/bin/xterm"/>
<SSH exec="/usr/bin/ssh"/>
</SSHConfig>
<Arguments>
<Argument value="--server-port=PV_SERVER_PORTS"/>
</Arguments>
</SSHCommand>
</CommandStartup>
</Server>

244 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Inside the SSHConfig element, we use different elements. Here, Terminal element is used to specify that ParaView
will try to open a terminal to ask the user for his password. Here, the terminal executable is specified using the exec
attribute. If it was not, ParaView would try to find one automatically (Linux and Windows). When troubleshooting
server configuration, not using Terminal element is suggested as the terminal will close as soon as the command
finish executing. On Linux, it is also possible to replace the Terminal element by the AskPass element to specify the
ParaView should use SSH_ASKPASS so that a ask-pass binary is used when asking for the SSH password. Finally, the
SSH element specify the SSH binary to use thanks to its exec attribute.

We also use PV_SERVER_PORT, similarly to case seven to let user select the port to connect to.
Case Fourteen: SSH run server command with user chosen config

Here, similarly to case thirteen and five, we use native ssh support to start a pvserver process remotely, on amberl,
before connecting to it directly, but we let the user choose interactively some SSH options.

<Server name='"casel4" resource="cs://amberl">
<CommandStartup>
<Options>
<Option label="SSH USER:" name="SSH_USER" save="true">
<String default="user"/>
</Option>
<Option label="SSH Exec:" name="SSH_EXEC" save="true'">
<File default="/usr/bin/ssh" />
</Option>
<Option label="Terminal:" name="TERMINAL" save="true">
<File default="/usr/bin/xterm"/>
</Option>
</Options>
<SSHCommand exec="/path/to/pvserver" delay="5">
<SSHConfig user="SSH_USER">
<Terminal exec="$TERMINALS$"/>
<SSH exec="SSH_EXECS"/>
</SSHConfig>
<Arguments>
<Argument value="--server-port=PV_SERVER_PORTS"/>
</Arguments>
</SSHCommand>
</CommandStartup>
</Server>

Similarly to all other options, SSH related options can be set interactively by the user. Here we let the user set the SSH
user, the SSH executable as well as the Terminal executable to use when connecting through ssh.

SSH USER: user

SSH Exec: Jusr/bin/ssh

Terminal: /usr/bin/xterm

ok || X cancel

2.7. Remote and parallel visualization 245

ParaView Users Guide Documentation, Release 5.12.0

Case Fifteen: Ssh run server command with reverse connection

Similarly to case twelve and thirteen, we use native ssh support to start a reverse connection pvserver process remotely,
on amberl, before letting it connect to ParaView using the hostname of the client on static non-default port.

<Server name="casel5" resource="csrc://amberl:11112">
<CommandStartup>
<SSHCommand exec="/path/to/pvserver" delay="5">
<SSHConfig user="user">
<Terminal/>
</SSHConfig>
<Arguments>
<Argument value="--reverse-connection"/>
<Argument value="--client-host=PV_CLIENT_HOSTS"/>
<Argument value="--server-port=PV_SERVER_PORTS"/>
</Arguments>
</SSHCommand>
</CommandStartup>
</Server>

The only difference with case twelve is in the ressource, which now contain the reverse connection as well as the
usage of PV_CLIENT_HOSTS in the arguments for the reverse connection, automatically set to the hostname of the
client which the server should be able to resolve to an ip to connect to.

Case Sixteen: Secured Connection to a Server trough SSH tunnel
To communicate securely trough a ssh tunnel, something usually done with a crafted command looking like this: ssh
-L 8080:1ocalhost:port user@remote /path/to/pvserver --sp=port

You would then connect on a server on localhost:8080 within ParaView. This is complex to set up either manually
of with a Command element. Also, the true server and port will not appear in the pipeline browser in ParaView.

This is however natively supported with SSHCommand element. Here we create a secured SSH tunnel to amber1 before
connecting through the SSH tunnel on the 11111 port.

<Server name='"casel6" resource='"cs://amberl:11111">
<CommandStartup>
<SSHCommand exec="/path/to/pvserver" delay="5">
<SSHConfig user="user">
<Terminal/>
<PortForwarding local="8080"/>
</SSHConfig>
<Arguments>
<Argument value="--server-port=PV_SERVER_PORTS"/>
</Arguments>
</SSHCommand>
</CommandStartup>
</Server>

Similarly to case thirteen, we only add a PortForwarding element in the SSHConfig element with a 1ocal attribute
port, so that ParaView creates a SSH tunnel to connect through. The PV_SERVER_PORTS is automatically set to the
value of the port to use within the SSH tunnel. In ParaView, the tunnel will be integrated nicely in the UI with the
correct port and hostname in the pipeline browser, the server icon will look different with a small lock to note the
secured nature of this connection:

246 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Pipeline Browser @®
casel6 (cs://gamma:11111)

Case Seventeen: Secured Reverse Connection from a Server trough SSH tunnel

Similarly to case sixteen, a reverse connection through a SSH tunnel would require to craft a command like this one:
ssh -R 8080:localhost:port user@remote /path/to/pvserver --rc --ch=localhost --sp=8080

You would then connect on a reverse connection server on localhost:8080 on ParaView. This is complex to set up
either manually or with a Command element. Also, the true server and port will not appear in the pipeline browser in
ParaView.

This is however natively supported with SSHCommand. Here we create a reverse secured SSH tunnel to amber]1 before
reverse connecting through the SSH tunnel on a specific port.

<Server name=''casel7" resource="csrc://amber1:11115">
<CommandStartup>
<SSHCommand exec="/path/to/pvserver" delay="5">
<SSHConfig user="user">
<Terminal/>
<PortForwarding local="8080"/>
</SSHConfig>
<Arguments>
<Argument value="--reverse-connection"/>
<Argument value="--client-host=localhost"/>
<Argument value="--server-port=$PV_SSH_PF_SERVER_PORT$"/>
</Arguments>
</SSHCommand>
</CommandStartup>
</Server>

We also specify a PortForwarding element in the SSHConfig with a 1ocal port to trigger the creation of the SSH
tunnel. Finally, $PV_SSH_PF_SERVER_PORT$ variable should be use by the server to connect through the SSH tunnel
to the client.

Did you know?

While SSH native support can simplify the configuration file, some cases are still not covered and require complex
custom command. Client/DataServer/RenderServer SSH setup are not supported natively, nested SSH tunnels are not
supported natively either. To create such setup, use of complex Command is needed.

PVSC file XML Schema

Here is the exhaustive PVSC file XML schema

* The <Servers> tag is the root element of the document, which contains zero-to-many <Server>
tags.

» Each <Server> tag represents a configured server:

* The name attribute uniquely identifies the server configuration, and is displayed in the user
interface.

2.7. Remote and parallel visualization 247

ParaView Users Guide Documentation, Release 5.12.0

* The timeout attribute specifies the maximum amount of time (in seconds) that the client
will wait for the server to start, -1 means forever, default to 60.

* The resource attribute specifies the type of server connection, server host(s) and optional
port(s) for making a connection. Values are

e cs://<host>:<port> - for client-pvserver configurations with forward connection i.e.
client connects to the server. If not specified, port default to 11111.

e csrc://<host>:<port> - for client-pvserver configurations with reverse connection i.e.
server connects to the client. If not specified, port default to 11111.

e cdsrs://<ds-host>:<ds-port>//<rs-host>:<rs-port> - for client-pvdataserver-
pvrenderserver configurations with forward connection. If not specified, ds-port default to
11111, rs-port default to 22222.

e cdsrsrc://<ds-host>:<ds-port>//<rs-host>:<rs-port> - for client-
pvdataserver-pvrenderserver configurations with reverse connection. If not specified,
ds-port default to 11111, rs-port default to 22222.

e The <CommandStartup> tag is used to run an external command to start a server.

* An optional <Options> tag can be used to prompt the user for options required
at startup.

» Each <Option> tag represents an option that the user will be prompted to
modify before startup.

* The name attribute defines the name of the option, which will become
its variable name when used as a run-time environment variable, and
for purposes of string-substitution in <Argument> tags.

* The label attribute defines a human-readable label for the option,
which will be used in the user interface.

* The optional readonly attribute can be used to designate options
which are user-visible, but cannot be modified.

* The optional save attribute can be used to indicate that the value
choosen by the user for this option will be saved in the ParaView set-
tins so that it’s preserved across ParaView sessions.

* A <Range> tag designates a numeric option that is only valid over a
range of values.

* The type attribute controls the type of number controlled. Valid
values are int for integers and double for floating-point num-
bers, respectively.

e The min and max attributes specify the minimum and maximum
allowable values for the option (inclusive).

» The step attribute specifies the preferred amount to increment /
decrement values in the user interface.

e The default attribute specifies the initial value of the option.

* As a special-case for integer ranges, a default value of random
will generate a random number as the default each time the
user is prompted for a value. This is particularly useful with
PV_CONNECT_ID and PV_SERVER_PORT.

248 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

* A <String> tag designates an option that accepts freeform text as its
value.

* The default attribute specifies the initial value of the option.

* A <File> tag designates an option that accepts freeform text along
with a file browse button to assist in choosing a filepath

* The default attribute specifies the initial value of the option.

* A <Boolean> tag designates an option that is either on/off or
true/false.

* The true attribute specifies what the option value will be if enabled
by the user.

* The false attribute specifies what the option value will be if disabled
by the user.

* The default attribute specifies the initial value of the option, either
true or false.

* An <Enumeration> tag designates an option that can be one of a
finite set of values.

* The default attribute specifies the initial value of the option,
which must be one of its enumerated values.

* Each <Entry> tag describes one allowed value.

» The name tag specifies the value for that choice.

The label tag provides human-readable text that will be dis-
played in the user interface for that choice.

* A <Command> tag is used to specify the external command and its startup argu-
ments.

* The exec attribute specifies the filename of the command to be run.
The system PATH will be used to search for the command, unless an
absolute path is specified. If the value for this attribute is specified as
$STRINGS, then it will be replaced with the value of a predefined or
user-defined (through <Option/>) variable.

» The process_wait attribute specifies a waiting time (in seconds) that
ParaView will wait for the exec command to start. Default to O.

* The delay attribute specifies a delay (in seconds) between the time the
startup command completes and the time that the client attempts a con-
nection to the server. Default to 0.

e <Argument> tags are command-line arguments that will be passed to
the startup command.

» String substitution is performed on each argument, replacing each
$STRINGS with the value of a predefined or user-defined variable.

* Arguments whose value is an empty string are not passed to the startup
command.

* A <SSHCommand> tag is used to specify the external command to be started
through ssh

¢ All <Command> related attributes and tags still applies.

2.7. Remote and parallel visualization 249

ParaView Users Guide Documentation, Release 5.12.0

* A <SSHConfig> tag is used to set the SSH configuration.
e The user attribute is used to set the SSH username

* A <Terminal> tag is used to inform ParaView to use a terminal
to issue ssh commands and ask user for password when needed.

* The exec attribute specifies the terminal executable to use, if not
set, ParaView will try to find one automatically, on Windows and
Linux only.

* A <AskPass> tag, which should not be used with <Terminal>
tag, can be used to inform ParaView to use a AskPass, using the
SSH_ASKPASS environnement variable, on Linux only.

* A <SSH> tag, used to specify
* the exec attribute that specifies the SSH executable to use.

* A <PortForwarding> tag, thatindicates to ParaView thata SSH
tunnel will need to be created, either forward or reverse depend-
ing on the connection type.

* the local attribute that specified the local port to use the SSH
tunel.

* The <ManualStartup> tag indicates that the user will manually start the given
server prior to connecting.

* An optional <Options> tag can be used to prompt the user for options
required at startup. Note that PV_SERVER_PORT, PV_DATA_SERVER_PORT,
PV_RENDER_SERVER_PORT, and PV_CONNECT_ID are the only variables that
make sense in this context.

Startup Command Variables

When a startup command is run, its environment will include all of the user-defined variables specified in <Option>
tags, plus the following predefined variables:

¢ PV_CLIENT_HOST

PV_CONNECTION_URI

* PV_CONNECTION_SCHEME

« PV_VERSION_MAJOR (e.g. 5)
* PV_VERSION_MINOR (e.g. 9)
* PV_VERSION_PATCH (e.g. 1)
* PV_VERSION (e.g. 5.9)

« PV_VERSION_FULL (e.g. 5.9.1)
* PV_SERVER_HOST

* PV_SERVER_PORT

* PV_SSH_PF_SERVER_PORT
* PV_DATA_SERVER_HOST

* PV_DATA_SERVER_PORT

250 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

¢ PV_RENDER_SERVER_HOST

e PV_RENDER_SERVER_PORT

e PV_CLIENT_PLATFORM (possible values are: Windows, Apple, Linux, Unix, Unknown)
e PV_APPLICATION_DIR

e PV_APPLICATION_NAME

e PV_CONNECT_ID

These options can be used in the <Command> or <SSHCommand> elements part of the PVSC files, as well as extracted
from the environnement when running the command. If an <Option> element defines a variable with the same name
as a predefined variable, the <Option> element value takes precedence. This can be used to override defaults that are
normally hidden from the user. As an example, if a site wants users to be able to override default port numbers, the
server configuration might specify an <Option> of PV_SERVER_PORT.

2.7.6 Understanding parallel processing

Parallel processing, put simply, implies processing the data in parallel, simultaneously using multiple workers. Typ-
ically, these workers are different processes that could be running on a multicore machine or on several nodes of a
cluster. Let’s call these ranks. In most data processing and visualization algorithms, work is directly related to the
amount of data that needs to be processed, i.e., the number of cells or points in the dataset. Thus, a straight-forward
way of distributing the work among ranks is to split an input dataset into multiple chunks and then have each rank op-
erate only an independent set of chunks. Conveniently, for most algorithms, the result obtained by splitting the dataset
and processing it separately is same as the result that we’d get if we processed the dataset in a single chunk. There are,
of course, exceptions. Let’s try to understand this better with an example. For demonstration purposes, consider this
very simplified mesh.

Now, let us say we want to perform visualizations on this mesh using three processes. We can divide the cells of the
mesh as shown below with the blue, yellow, and pink regions.

Once partitioned, some visualization algorithms will work by simply allowing each process to independently run the
algorithm on its local collection of cells. Take clipping as an example. Let’s say that we define a clipping plane and
give that same plane to each of the processes.

2.7. Remote and parallel visualization 251

ParaView Users Guide Documentation, Release 5.12.0

X

Each process can independently clip its cells with this plane. The end result is the same as if we had done the clipping
serially. If we were to bring the cells together (which we would never actually do for large data for obvious reasons),
we would see that the clipping operation took place correctly.

RN

Ghost levels

Unfortunately, blindly running visualization algorithms on partitions of cells does not always result in the correct
answer. As a simple example, consider the external faces algorithm. The external faces algorithm finds all cell faces
that belong to only one cell, thereby, identifying the boundaries of the mesh.

Oops! We see that when all the processes ran the external faces algorithm independently, many internal faces where
incorrectly identified as being external. This happens where a cell in one partition has a neighbor in another partition.
A process has no access to cells in other partitions, so there is no way of knowing that these neighboring cells exist.

The solution employed by ParaView and other parallel visualization systems is to use ghost cells . Ghost cells are
cells that are held in one process but actually belong to another. To use ghost cells, we first have to identify all the
neighboring cells in each partition. We then copy these neighboring cells to the partition and mark them as ghost cells,
as indicated with the gray colored cells in the following example.

When we run the external faces algorithm with the ghost cells, we see that we are still incorrectly identifying some
internal faces as external. However, all of these misclassified faces are on ghost cells, and the faces inherit the ghost
status of the cell from which it came. ParaView then strips off the ghost faces, and we are left with the correct answer.

In this example, we have shown one layer of ghost cells: only those cells that are direct neighbors of the partition’s
cells. ParaView also has the ability to retrieve multiple layers of ghost cells, where each layer contains the neighbors

252 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

of the previous layer not already contained in a lower ghost layer or in the original data itself. This is useful when we
have cascading filters that each require their own layer of ghost cells. They each request an additional layer of ghost
cells from upstream, and then remove a layer from the data before sending it downstream.

Data partitioning

Since we are breaking up and distributing our data, it is prudent to address the ramifications of how we partition the
data. The data shown in the previous example has a spatially coherent partitioning. That is, all the cells of each
partition are located in a compact region of space. There are other ways to partition data. For example, you could have
a random partitioning.

[

.
A [I\|<I []

Aﬂ S\/_DI:I
5

Random partitioning has some nice features. It is easy to create and is friendly to load balancing. However, a serious
problem exists with respect to ghost cells.

N

In this example, we see that a single level of ghost cells nearly replicates the entire dataset on all processes. We have

2.7. Remote and parallel visualization 253

ParaView Users Guide Documentation, Release 5.12.0

thus removed any advantage we had with parallel processing. Because ghost cells are used so frequently, random
partitioning is not used in ParaView.

D3 Filter

The previous section described the importance of load balancing and ghost levels for parallel visualization. This section
describes how to achieve that.

Load balancing and ghost cells are handled automatically by ParaView when you are reading structured data (image
data, rectilinear grid, and structured grid). The implicit topology makes it easy to break the data into spatially coherent
chunks and identify where neighboring cells are located.

It is an entirely different matter when you are reading in unstructured data (poly data and unstructured grid). There is no
implicit topology and no neighborhood information available. ParaView is at the mercy of how the data was written to
disk. Thus, when you read in unstructured data, there is no guarantee of how well-load balanced your data will be. It is
also unlikely that the data will have ghost cells available, which means that the output of some filters may be incorrect.

Fortunately, ParaView has a filter that will both balance your unstructured data and create ghost cells. This filter is
called D3, which is short for distributed data decomposition. Using D3 is easy; simply attach the filter (located in
Filters > Alphabetical > D3) to whatever data you wish to repartition.

The most common use case for D3 is to attach it directly to your unstructured grid reader. Regardless of how well-load
balanced the incoming data might be, it is important to be able to retrieve ghost cell so that subsequent filters will
generate the correct data. The example above shows a cutaway of the extract surface filter on an unstructured grid. On
the left, we see that there are many faces improperly extracted because we are missing ghost cells. On the right, the
problem is fixed by first using the D3 filter.

254 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

2.7. Remote and parallel visualization 255

ParaView Users Guide Documentation, Release 5.12.0

2.7.7 Ghost Cells Generation

If your unstructured grid data is already partitioned satisfactorily but does not have ghost cells, it is possible to generate
them using the Ghost Cells filter. This filter can be attached to a source just like the D3 filter. Unlike D3 , it will not
repartition the dataset, it will only generate ghost cells, which is needed for some algorithms to execute correctly.

The Ghost Cells filter has several options. Build If Required tells the filter to generate ghost cells only if required
by a downstream filter. Since computing ghost cells is a computationally and communications intensive process, turning
this option on can potentially save a lot of processing time. The Minimum Number Of Ghost Levels specifies at
least how many ghost levels should be generated if Build If Required is off. Downstream filters may request more
ghost levels than this minimum, in which case the Ghost Cells will generate the requested number of ghost levels.
The Use Global Ids option makes use of a Globallds array if it is present if on. If off, ghost cells are determined by
coincident points.

2.7.8 ParaView architecture

Before we see how to use ParaView for parallel data processing, let’s take a closer look at the ParaView architecture.
ParaView is designed as a three-tier client-server architecture. The three logical units of ParaView are as follows.

* Data Server The unit responsible for data reading, filtering, and writing. All of the pipeline objects seen in the
pipeline browser are contained in the data server. The data server can be parallel.

* Render Server The unit responsible for rendering. The render server can also be parallel, in which case built-in
parallel rendering is also enabled.

* Client The unit responsible for establishing visualization. The client controls the object creation, execution,
and destruction in the servers, but does not contain any of the data (thus allowing the servers to scale without
bottlenecking on the client). If there is a GUI, that is also in the client. The client is always a serial application.

These logical units need not by physically separated. Logical units are often embedded in the same application, remov-
ing the need for any communication between them. There are three modes in which you can run ParaView.

Client

Data Render
Server Server

The first mode, with which you are already familiar, is standalone mode. In standalone mode, the client, data server,
and render server are all combined into a single serial application. When you run the paraview application, you are
automatically connected to a builtin server so that you are ready to use the full features of ParaView.

The second mode is client-server mode. In client-server mode, you execute the pvserver program on a parallel
machine and connect to it with the paraview client application (or pvpython). The pvserver program has both the
data server and render server embedded in it, so both data processing and rendering take place there. The client and
server are connected via a socket, which is assumed to be a relatively slow mode of communication, so data transfer
over this socket is minimized. We saw this mode of operation in Section 2.7.2.

256 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Data Render

Server Server Client

Data
Server

Render
Server

Client

The third mode is client-render server-data server mode. In this mode, all three logical units are running in separate
programs. As before, the client is connected to the render server via a single socket connection. The render server and
data server are connected by many socket connections, one for each process in the render server. Data transfer over the
sockets is minimized.

Although the client-render server-data server mode is supported, we almost never recommend using it. The original
intention of this mode is to take advantage of heterogeneous environments where one might have a large, powerful
computational platform and a second smaller parallel machine with graphics hardware in it. However, in practice, we
find any benefit is almost always outstripped by the time it takes to move geometry from the data server to the render
server. If the computational platform is much bigger than the graphics cluster, then use software rendering on the large
computational platform. If the two platforms are about the same size, just perform all the computation on the graphics
cluster. The executables used for this mode are paraview (or pvpython) (acting as the client), pvdataserver for the
data-server, and pvrenderserver for the render-server.

2.7.9 Parallel processing in paraview and pvpython

To leverage parallel processing capabilities in paraview or pvpython, one has to use remote visualization, i.e., one
has to connect to a pvserver. The processing for connecting to this pvserver is not different from what we say in
Section 2.7.2 and Section 2.7.3. The only thing that changes is how the pvserver is launched.

You can start pvserver to run on more than one processing core using mpirun .

[mpirun -np 4 pvserver

This will run pvserver on four processing cores. It will still listen for an incoming connection from a client on the
default port. The big difference when running pvserver this way is that when data is loaded from a source, it will be
distributed across the four cores if the data source is parallel aware and supports distributing the data across the
different processing cores.

To see how this data is distributed, run pvserver as the command above and connect to it with paraview. Next,
create another Sphere source using Source > Sphere. Change the array to color by to vtkProcessId. You will see

2.7. Remote and parallel visualization 257

ParaView Users Guide Documentation, Release 5.12.0

an image like Figure Fig. 2.26.

Fig. 2.26: Sphere source colored by vtkProcessId array that encodes the processing core on which the sphere data
resides. Here, the sphere data is split among the four processing cores invoked by the command mpirun -np 4
pvserver.

If a data reader or source is not parallel aware, you can still get the benefits of spreading the data among processing
cores by using the D3 filter. This filter partitions a dataset into convex regions and transfers each region to a different
processing core. To see an example of how D3 partitions a dataset, create a Source > Wavelet while paraview is still
connected to the pvserver. Next, select Filters > Alphabetical > D3 and click Apply . The output of D3 will not
initially appear different from the original wavelet source. If you color by vtkProcessId , however, you will see the
four partitions that have been distributed to the server processing cores.

2.7.10 Using pvbatch

In Section 2.7.9, we said that to use parallel processing capabilities, one has to use remote visualization, i.e., one must
use ParaView in a client-server mode with the client (paraview or pvpython) connecting to a server (pvserver) that
is being run in parallel using mpirun . However, there is one exception: pvbatch. pvpython and pvbatch are quite
similar in that both are similarly to the python

executable that can be used to run Python scripts. The extra thing that these executables do when compared with
the standard python is that they initialize the environment so that any scripts that you run will be able to locate the
ParaView Python modules and libraries automatically. pvpython is exactly like the paraview executable without the
GUIL. You can think of it as the GUI from paraview is replaced by a Python interpreter in pvpython. pvbatch, on
the other hand, can be thought of a pvserver where, instead of taking the control command from a remote client
(paraview or pvpython), in pvbatch, the commands are taken from a Python script that is executed in the pvbatch
executable itself. Since pvbatch is akin to the pvserver, unlike pvpython, it can be run in parallel using mpirun
. In that case, the root rank (or the first rank or the rank with index 0) is the one that acts as the client, interpreting
the Python script to execute the commands. Since pvbatch is designed to act is its own server, you cannot connect
to a remote server in the Python script, i.e., you cannot use simple.Connect . Furthermore, pvbatch is designed

258 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Fig. 2.27: Wavelet source processed by the D3 filter and colored by vtkProcessId array. Note how four regions of the
image data are split evenly among the four processing cores when pvserver is run with mpirun -np 4 pvserver.

for batch operation, which means that you can only specify the Python script as a command line argument. Unlike
pvpython, you cannot run this executable to get an interactive shell to enter Python commands.

process the sample.py script in single process mode.
> pvbatch sample.py

process the sample.py script in parallel.
> mpirun -np 4 pvbatch sample.py

In general, you should use pvpython if you will be using the interpreter interactively and pvbatch if you are running
in parallel.

2.7.11 Fetching data to the client

Section 1.3.3 describes how to obtain information about a data object, but not how to access the data object itself. This
section describes several ways to access data from within a Python script. The client/server nature of ParaView requires
a couple steps to access the raw data. The Python script runs on the client side in either pvpython or paraview, so
one step involves moving the data from the server to the client. This can be accomplished with the following:

from paraview.simple import *
Connect ("myhost")

Create a sphere source on myhost
s = Sphere()
full_sphere = servermanager.Fetch(s)

2.7. Remote and parallel visualization 259

ParaView Users Guide Documentation, Release 5.12.0

Here, the full dataset is moved from the server to the client.

The second step is required to deal with the fact that data on the remote server may be split across distributed processes.
By default, servermanager.Fetch(s) appends all the pieces on the different remote processes and produces the
appended dataset on the client. The exact append operation depends on the type of dataset being retrieved. Composite
datasets are merged by treating the dataset piece on each distributed process as a block merged into a new multiblock
dataset, polygonal datasets are appended into a single polygonal dataset, rectilinear grids are appended into a single
rectilinear grid, and other datasets are appended into an unstructured grid. Distributed image datasets cannot currently
be fetched to the client. Care must be taken when fetching an entire dataset to the client because the data that fits on
many distributed processes on a remote system may not fit in client memory.

Another option is to fetch just a single piece of the dataset on one remote process to the client. To do this, pass the rank
number of the remote process from which you want to retrieve the data to the Fetch function, e.g.,

Retrieve the piece of the dataset on remote process 2
s = Sphere()
sphere_piece = servermanager.Fetch(s, 2)

Lastly, servermanager.Fetch provides a way to apply helper filters to the dataset that run at two stages. The filter for
the first stage is applied to the data on each remote process, and the filter for the second stage is applied to the results
from the first stage after they are gathered to the root server process. The results from the second stage of filtering are
then transferred from the root server process to the client.

In the next example, the Extract Surface filter is applied to a source with data on each process in the first stage. The
results are then assembled with the Append Geometry filter and sent to the client.

s = Sphere()

extract = servermanager.filters.ExtractSurface()
append = servermanager.filters.AppendGeometry()
full_surface = servermanager.Fetch(s, extract, append)

The second filter must be able to accept multiple connections and handle the output dataset type from the first filter.

2.7.12 Rendering

Rendering is the process of synthesizing the images that you see based on your data. The ability to effectively interact
with your data depends highly on the speed of the rendering. Thanks to advances in 3D hardware acceleration, fueled
by the computer gaming market, we have the ability to render 3D quickly even on moderately-priced computers. But, of
course, the speed of rendering is proportional to the amount of data being rendered. As data gets bigger, the rendering
process naturally gets slower.

To ensure that your visualization session remains interactive, ParaView supports two modes of rendering that are au-
tomatically flipped as necessary. In the first mode, still render , the data is rendered at the highest level of detail. This
rendering mode ensures that all of the data is represented accurately. In the second mode, interactive render , speed
takes precedence over accuracy. This rendering mode endeavors to provide a quick rendering rate regardless of data
size.

While you are interacting with a 3D view (for example, rotating, panning, or zooming with the mouse), ParaView uses
an interactive render. This is because, during the interaction, a high frame rate is necessary to make these features
usable and because each frame is immediately replaced with a new rendering while the interaction is occurring so
that fine details are less important during this mode. At any time when interaction of the 3D view is not taking place,
ParaView uses a still render so that the full detail of the data is available as you study it. As you drag your mouse in
a 3D view to move the data, you may see an approximate rendering. The full detail will be presented as soon as you
release the mouse button.

The interactive render is a compromise between speed and accuracy. As such, many of the rendering parameters
concern when and how lower levels of detail are used.

260 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Basic Rendering Settings

Some of the most important rendering options are the LOD parameters. During interactive rendering, the geometry
may be replaced with a lower level of detail (LOD), an approximate geometry with fewer polygons.

The resolution of the geometric approximation can be controlled. In the proceeding images, the left image is the full
resolution, the middle image is the default decimation for interactive rendering, and the right image is ParaView’s
maximum decimation setting.

The 3D rendering parameters are located in the settings dialog box, which is accessed in the menu from the Edit >
Settings menu (ParaView > Preferences on the Mac). The rendering options in the dialog are in the Render View tab.

The options pertaining to the geometric decimation for interactive rendering are located in a section labeled
Interactive Rendering Options . Some of these options are considered advanced, so to access them, you have
to either toggle on the advanced options with the button or search for the option using the edit box at the top of the
dialog. The interactive rendering options include the following.

* LOD Threshold: Setthe datasize at which to use a decimated geometry in interactive rendering. If the geometry
size is under this threshold, ParaView always renders the full geometry. Increase this value if you have a decent
graphics card that can handle larger data. Try decreasing this value if your interactive renders are too slow.

e LOD Resolution : Set the factor that controls how large the decimated geometry should be. This control is set
to a value between 0 and 1. 0 produces a very small number of triangles but, possibly, with a lot of distortion. 1
produces more detailed surfaces but with larger geometry.

* Non Interactive Render Delay : Add a delay between an interactive render and a still render. ParaView
usually performs a still render immediately after an interactive motion is finished (for example, releasing the
mouse button after a rotation). This option can add a delay that can give you time to start a second interaction
before the still render starts, which is helpful if the still render takes a long time to complete.

* Use Outline For LOD Rendering : Use an outline in place of decimated geometry. The outline is an alter-
native for when the geometry decimation takes too long or still produces too much geometry. However, it is more
difficult to interact with just an outline.

ParaView contains many more rendering settings. Here is a summary of some other settings that can effect the rendering
performance regardless of whether ParaView is run in client-server mode or not. These options are spread among
several categories, and several are considered advanced.

¢ Translucent Rendering Options

— Depth Peeling : Enable or disable depth peeling. Depth peeling is a technique ParaView uses to
properly render translucent surfaces. With it, the top surface is rendered and then “peeled away” so
that the next lower surface can be rendered and so on. If you find that making surfaces transparent
really slows things down or renders completely incorrectly, then your graphics hardware may not be
implementing the depth peeling extensions well; try shutting off depth peeling.

2.7. Remote and parallel visualization 261

ParaView Users Guide Documentation, Release 5.12.0

e 9 MY Settings

General Camera GHGESRUSTEE Color Arrays Color Palette

|Ed:i3n;;l1 o (USE ESC 10 Clear text) =

Antialiasing Options
Use FXAA: Enable FXAA antialiasing on 30 geometry,

Interactive Rendering Options

LOD Threshold: Set the data size (in megabytes) beyond which to employ
decimation, if possible, to speed renders when interacting. 0 implias the use of
decimation for all interactive renders,

20

Use Qutline For LOD Rendering: Use ocutline, instead of decimated
geometry when interacting, if applicable,

Remote/Parallel Rendering Options

Remote Render Threshold: Set the data size (in megabytes) beyond which to
rander data remately (or in parallel) when connected o parallel P e g
capable server. In that case the rendered images are delivered to the client.
Otheerwise, the geometry is delivered to the client and rendering happens lecally.

20

Miscellaneous

Owtlirne Threshold: When opening a dataset or creating a new filters, use
Qwitline representation, if possible, when showing datasets with number of cells

greeater than thus threshold (in millions).
250

Baset Bestore Defaulls Apply Cancel m

262 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

— Depth Peeling for Volumes : Include volumes in depth peeling to correctly intermix volumes
and translucent polygons.

— Maximum Number Of Peels : Set the maximum number of peels to use with depth peeling. Using
more peels allows more depth complexity, but allowing less peels runs faster. You can try adjusting
this parameter if translucent geometry renders too slow or translucent images do not look correct.

¢ Miscellaneous

— Outline Threshold: When creating very large datasets, default to the outline representation. Sur-
face representations usually require ParaView to extract geometry of the surface, which takes time
and memory. For data with sizes above this threshold, use the outline representation, which has very
little overhead, by default instead.

— Show Annotation : Show or hide annotation providing rendering performance information. This
information is handy when diagnosing performance problems.

Note that this is not a complete list of ParaView rendering settings. We have left out settings that do not significantly
affect rendering performance. We have also left out settings that are only valid for parallel client-server rendering,
which are discussed in Section 2.7.12.

Basic Parallel Rendering

When performing parallel visualization, we are careful to ensure that the data remains partitioned among all of the
processes up to and including the rendering processes. ParaView uses a parallel rendering library called IceT . IceT
uses a sort-last algorithm for parallel rendering. This parallel rendering algorithm has each process independently
render its partition of the geometry and then composites the partial images together to form the final image.

The preceding diagram is an oversimplification. IceT contains multiple parallel image compositing algorithms such as
binary tree , binary swap , and radix-k that efficiently divide work among processes using multiple phases.

The wonderful thing about sort-last parallel rendering is that its efficiency is completely insensitive to the amount
of data being rendered. This makes it a very scalable algorithm and well suited to large data. However, the parallel
rendering overhead does increase linearly with the number of pixels in the image. Consequently, some of the rendering
parameters deal with the image size.

IceT also has the ability to drive tiled displays, which are large, high-resolution displays comprising an array of monitors
or projectors. Using a sort-last algorithm on a tiled display is a bit counterintuitive because the number of pixels to
composite is so large. However, IceT is designed to take advantage of spatial locality in the data on each process to
drastically reduce the amount of compositing necessary. This spatial locality can be enforced by applying the Filters >
Alphabetical > D3 filter to your data.

2.7. Remote and parallel visualization 263

ParaView Users Guide Documentation, Release 5.12.0

/d"v
A

264 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Because there is an overhead associated with parallel rendering, ParaView has the ability to turn off parallel rendering
at any time. When parallel rendering is turned off, the geometry is shipped to the location where display occurs.
Obviously, this should only happen when the data being rendered is small.

Image Level of Detail

The overhead incurred by the parallel rendering algorithms is proportional to the size of the images being generated.
Also, images generated on a server must be transfered to the client, a cost that is also proportional to the image size.
To help increase the frame rate during interaction, ParaView introduces a new LOD parameter that controls the size of
the images.

During interaction while parallel rendering, ParaView can optionally subsample the image. That is, ParaView will
reduce the resolution of the image in each dimension by a factor during interaction. Reduced images will be rendered,
composited, and transfered. On the client, the image is inflated to the size of the available space in the GUI.

The resolution of the reduced images is controlled by the factor with which the dimensions are divided. In the proceed-
ing images, the left image has the full resolution. The following images were rendered with the resolution reduced by
a factor of 2, 4, and 8, respectively.

ParaView also has the ability to compress images before transferring them from server to client. Compression, of
course, reduces the amount of data transferred and, therefore, makes the most of the available bandwidth. However,
the time it takes to compress and decompress the images adds to the latency.

ParaView contains several different image compression algorithms for client-server rendering. The first uses LZ4 com-
pression that is designed for high-speed compression and decompression. The second option is a custom algorithm
called Squirt , which stands for Sequential Unified Image Run Transfer. Squirt is a run-length encoding compression
that reduces color depth to increase run lengths. The third algorithm uses the Zlib compression library, which imple-
ments a variation of the Lempel-Ziv algorithm. Zlib typically provides better compression than Squirt, but it takes
longer to perform and, hence, adds to the latency. paraview Windows and Linux executables include a compression
option that uses NVIDIA’s NVPipe library for hardware-accelerated compression and decompression if a Kepler-class
or higher NVIDIA GPU is available.

Parallel Render Parameters

Like the other 3D rendering parameters, the parallel rendering parameters are located in the Settings dialog. The
parallel rendering options in the dialog are in the Render View tab (intermixed with several other rendering options
such as those described in Section 2.7.12). The parallel and client-server options are divided among several categories,
and several are considered advanced.

e Remote/Parallel Rendering Options

— Remote Render Threshold: Setthe data size at which to render remotely in parallel or to render locally.
If the geometry is over this threshold (and ParaView is connected to a remote server), the data is rendered
in parallel remotely, and images are sent back to the client. If the geometry is under this threshold, the
geometry is sent back to the client, and images are rendered locally on the client.

2.7. Remote and parallel visualization 265

ParaView Users Guide Documentation, Release 5.12.0

Settings
[General | camera | RenderView | Color Palette

[Search ... (Use Esc to clear text)

!

3

Remote/Parallel Rendering Options (=]

Remote Render Threshold: Set the data size (in megabytes) beyond
which to render data remotely (or in parallel) when connected to parallel
rendering capable server. In that case the rendered images are delivered
to the client. Otherwise, the geometry is delivered to the client and
rendering happens locally.

O [21504]

still Render Image Reduction Factor: Set the sub-sampling Factor to use
for non-interactive rendering. When rendering on large tiles (or multiple
tiles), sub-sampling will help improve image compositing performance.
This has no effect if remote/parallel rendering is not being used.

v [1

Client/Server Rendering Options

Image Reduction Factor: To reduce image compositing costs during
interactions, set the image sub-sampling Factor. Set to 1 to not use any
subsampling.

¥ 4

Image Compression

Set the compression method used when transferring rendered images
from the server to the client. -

[Squ irt (run-length encoding based compression) | v]

Set the Squirt compression level. Move to right for better compression
ratio at the cost of reduced image quality.

o 3 g
)

| [@Reset l [Restore Defaults l [v"App[y] [X gam:ell l </ oK

266 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

— Still Render Image Reduction Factor : Set the sub-sampling factor for still (non-interactive) ren-
dering. Some large displays have more resolution than is really necessary, so this sub-sampling reduces
the resolution of all images displayed.

Client/Server Rendering Options

— Image Reduction Factor: Setthe interactive subsampling factor. The overhead of parallel rendering is
proportional to the size of the images generated. Thus, you can speed up interactive rendering by specifying
an image subsampling rate. When this box is checked, interactive renders will create smaller images, which
are then magnified when displayed. This parameter is only used during interactive renders.

Image Compression

— Before images are shipped from server to client, they can optionally be compressed using one of three
available compression algorithms: LZ4 , Squirt , or Zlib . To make the compression more effective, either
algorithm can reduce the color resolution of the image before compression. The sliders determine the
amount of color bits saved. Full color resolution is always used during a still render.

— Suggested image compression presets are provided for several common network types. When attempting
to select the best image compression options, try starting with the presets that best match your connection.

Parameters for Large Data

The default rendering parameters are suitable for most users. However, when dealing with very large data, it can help
to tweak the rendering parameters. While the optimal parameters depend on your data and the hardware on which
ParaView is running, here are several pieces of advice that you should follow.

If there is a long pause before the first interactive render of a particular dataset, it might be the creation of the
decimated geometry. Try using an outline instead of decimated geometry for interaction. You could also try
lowering the factor of the decimation to 0 to create smaller geometry.

Avoid shipping large geometry back to the client. The remote rendering will use the power of the entire server
to render and ship images to the client. If remote rendering is off, geometry is shipped back to the client. When
you have large data, it is always faster to ship images than to ship data. (Although, if your network has a high
latency, this could become problematic for interactive frame rates.)

Adjust the interactive image sub-sampling for client-server rendering as needed. If image compositing is slow,
if the connection between client and server has low bandwidth, or if you are rendering very large images, then a
higher subsample rate can greatly improve your interactive rendering performance.

Make sure Image Compression is on. It has a tremendous effect on desktop delivery performance, and the
artifacts it introduces, which are only there during interactive rendering, are minimal. Lower bandwidth con-
nections can try using Zlib instead of Squirt compression. Zlib will create smaller images at the cost of longer
compression/decompression times.

If the network connection has a high latency, adjust the parameters to avoid remote rendering during interaction.
In this case, you can try turning up the remote rendering threshold a bit, and this is a place where using the outline
for interactive rendering is effective.

If the still (non-interactive) render is slow, try turning on the delay between interactive and still rendering to avoid
unnecessary renders.

2.7. Remote and parallel visualization 267

ParaView Users Guide Documentation, Release 5.12.0

2.8 Memory Inspector

The ParaView Memory Inspector panel provides users with a convenient way to monitor ParaView’s memory
usage during interactive visualization. It also provides developers with a point-and-click interface for attaching a de-
bugger to local or remote client and server processes. As explained earlier, both the Information panel and the
Statistics Inspector are prone to over and under estimate the total memory used for the current pipeline. The
Memory Inspector addresses those issues through direct queries to the operating system. A number of diagnostic
statistics are gathered and reported, including the total memory used by all processes on a per-host basis, the total
cumulative memory use by ParaView on a per-host basis, and the individual per-rank use by each ParaView process.
‘When memory consumption reaches a critical level, either cumulatively on the host or in an individual rank, the corre-
sponding GUI element will turn red, alerting you that you are in danger of potentially being shut down. This gives you
a chance to save state and restart the job with more nodes to avoid losing your work. On the flip side, knowing when
you’re not close to using the full capacity of available memory can be useful to conserve computational resources by
running smaller jobs. Of course, the memory foot print is only one factor in determining the optimal run size.

Fle Edit View Sources Flters Tools Macros Help

e B waF ? | BER % KD E Tmel [s07 2
T = ogntu =] sice JIRsdkksak [Feed
BEO0U0®ROEL0E e [
Pipeline Brawser B | Layout #1x | + I Memory Inspector i
@) SQimageGhosts] =} IF&S] 2o (@) @lalo] |
@) sQremelConvalutionl) g client I
. asolmgwhmm [=] [__ [system Totol SR EXB 47.28%
'Y - SOvortexFilterl -} il sraview i 231.77 MIB 0.96%
Praperties &) E [
servar
R pnply @ Reset || 3 Delete ? B
. [: System Totol IELALXALNE . 52%
ﬂ '|a01 113 Jonghom| o enver @ 338 GIB5.0B%
split companents 2) G 16690 i 1.09 Gib 2.91% I
Result magnitude | i et 0 1.06 GIb 2.26% l
x Rotation 2 L6710] 1.06 Cil 2.25%]
3 16719 I 1.06 GiB 2.26%

Helicity

Normalized helicity

Q

Lambda-{1.2.3)
Lambda-2
Divergence

Gradient

Eigenvalue diagnestic

Systern Totol EEELAS AL . 09%
pvserver [l 4.26 GIB 9.05% |
22909 i 1.08 Gill 2.25%)
22919] 1.06 GiB 2.25% il
3 22979 I 1.06 GIB 2.26%] I
0 22936] 1.06 Gl 2.25% D

] Ic:ﬂi-l 17.longharm|

Bill's diagnostic ® Autc-update | (5 [

[u Arays to copy |
X8
*® Ue

= Display (UniformGridRepresentation) t}

Fig. 2.28: The main Ul elements of the Memory Inspector panel. A: Process Groups, B: Per-Host statistics, C: Per-
Rank statistics, and D: Update controls.

2.8.1 User interface and layout

The Memory Inspector panel displays information about the current memory usage on the client and server hosts.
Fig. 2.28 shows the main Ul elements labeled A-D. A number of additional features are provided via specialized context
menus accessible from the Client and Server group, Host, and Rank’s UI elements. The main UI elements are:

A. Process Groups
1. Client : There is always a client group that reports statistics about the ParaView client.

2. Server : When running in client-server mode, a server group reports statistics about the hosts where
pvserver processes are running.

3. Data Server : When running in client-data-render server mode, a data server group reports statistics about
the hosts where pvdataserver processes are running.

268 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

4. Render Server : When running in client-data-render server mode, a render server group reports statistics
about the hosts where pvrenderserver processes are running.

B. Per-Host Statistics : Per-host statics are reported for each host where a ParaView process is running. Hosts are
organized by host name, which is shown in the first column. Two statics are reported: 1) total memory used by
all processes on the host and 2) ParaView’s cumulative usage on this host. The absolute value is printed in a bar
that shows the percentage of the total available memory used. On systems where job-wide resource limits are
enforced, ParaView is made aware of the limits via the PV_HOST_MEMORY_LIMIT environment variable, in
which case, ParaView’s cumulative percent used is computed using the smaller of the host total and the resource
limit.

C. Update Controls : By default, when the panel is visible, memory use statistics are updated automatically as
pipeline objects are created, modified, or destroyed and after the scene is rendered. Updates may be triggered
manually by using the refresh button. Automatic updates may be disabled by un-checking the Auto-update check
box. Queries to remote systems have proven to be very fast even for fairly large jobs. Hence, the auto-update
feature is enabled by default.

D. Host Properties Dialog : The Host context menu provides the Host Properties dialog, which reports various
system details such as the OS version and the CPU version, as well as the memory installed and available to the
host context and process context. While the Memory Inspector panel reports memory use as a percent of the
available in the given context, the Host Properties dialog reports the total memory installed and available in
each context. Comparing the installed and available memory can be used to determine if you are impacted by
resource limits.

800

7 Client System Properties

Host: altair.kitwarein.com
0s: Mac 10.8.2 12C60

CPU: 4 core Intel(R) Core(TM) i7-2600
CPU @ 3.40GHz

Memory:Host Total: 16777216 KiB, Host
Available: 16777216 KiB, Process
Available: 16777216 KiB

Fig. 2.29: Host properties dialog.

2.8.2 Advanced debugging features
Remote commands

The Memory Inspector Panel provides a remote (or local) command feature, allowing you to execute a shell com-
mand on a given host. This feature is exposed via a specialized Rank item context menu. Because we have information
such as a rank’s process id, individual processes may be targeted. For example, this allows you to quickly attach a
debugger to a server process running on a remote cluster. If the target rank is not on the same host as the client, then the
command is considered remote. Otherwise, it is considered local. Therefore, remote commands are executed via ssh
, while local commands are not. A list of command templates is maintained. In addition to a number of pre-defined
command templates, you may add templates or edit existing ones. The default templates allow you to:

2.8. Memory Inspector 269

ParaView Users Guide Documentation, Release 5.12.0

Command Template
local gdb -
" add | Edit | Delete

Paramelers

FE_URL | USERECLUSTER.COM
SSH_EXEC | ssh
TERM_EXEC | xterm

TERM OFTS te -bg black -T PV HOSTS:5FV FIDS

Command Preview
sterm -geometry 200x40 -fg white -bg

black T missmarple.lbl.gov:13784 -a gdb --
pid=13784

execute cancel

Fig. 2.30: The remote command dialog.

270 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

* Attach gdb to the selected process
* Run top on the host of the selected process
» Send a signal to the selected process

Prior to execution, the selected template is parsed, and a list of special tokens are replaced with runtime-determined
or user-provide values. User-provided values can be set and modified in the dialog’s parameter group. The command,
with tokens replaced, is shown for verification in the dialog’s preview pane.

The following tokens are available and may be used in command templates as needed:

1. $TERM_EXECS$: The terminal program that will be used to execute commands. On Unix systems, xterm is
typically used. On Windows systems, cmd . exe is typically used. If the program is not in the default path, then
the full path must be specified.

2. $TERM_OPTS$: Command line arguments for the terminal program. On Unix, these may be used to set the
terminals window title, size, colors, and so on.

3. SSH_EXECS : The program to use to execute remote commands. On Unix, this is typically ssh. On Windows,
one option is plink.exe. If the program is not in the default path, then the full path must be specified.

4. $FE_URLS : Ssh URL to use when the remote processes are on compute nodes that are not visible to the outside
world. This token is used to construct command templates where two ssh hops are made to execute the command.

5. 8PV_HOSTS$: The hostname where the selected process is running.
6. PV_PIDS : The process-id of the selected process.

Note: On Windows, the debugging tools found in Microsoft’s SDK need to be installed in addition to Visual Studio
(e.g., windbg.exe). The ssh program plink.exe for Windows doesn’t parse ANSI escape codes that are used by
Unix shell programs. In general, the Windows- specific templates need some polishing.

Stack trace signal handler

The Process Group’s context menu provides a back trace signal handler option. When enabled, a signal handler is
installed that will catch signals such as SEGV, TERM, INT, and ABORT and that will print a stack trace before the
process exits. Once the signal handler is enabled, you may trigger a stack trace by explicitly sending a signal. The stack
trace signal handler can be used to collect information about crashes or to trigger a stack trace during deadlocks when
it’s not possible to ssh into compute nodes. Sites that restrict users’ ssh access to compute nodes often provide a way
to signal running processes from the login node. Note that this feature is only available on systems that provide support
for POSIX signals, and we currently only have implemented stack trace for GNU-compatible compilers.

2.8.3 Compilation and installation considerations

If the system on which ParaView will run has special resource limits enforced, such as job-wide memory use limits, or
non-standard per-process memory limits, then the system administrators need to provide this information to the running
instances of ParaView via the following environment variables. For example, those could be set in the batch system
launch scripts.

1. PV_HOST_MEMORY_LIMIT : For reporting host-wide resource limits.

2. PV_PROC_MEMORY_LIMIT : For reporting per-process memory limits. that are not enforced via standard
Unix resource limits.

A few of the debugging features (such as printing a stack trace) require debug symbols. These fea-
tures will work best when ParaView is built with CMAKE_BUILD_TYPE=Debug or, for release builds,
CMAKE_BUILD_TYPE=RelWithDebugSymbols.

2.8. Memory Inspector 271

ParaView Users Guide Documentation, Release 5.12.0

2.9 Multiblock Inspector

Composite datasets (Section 1.3) such as multiblock datasets and AMR are often encountered when visualizing results
from several scientific simulation codes e.g. OpenFOAM, Exodus, etc. Readers for several of these simulation file
formats support selecting which blocks to read. Additionally, you may want to control display properties such as
visibility, opacity, and color for individual blocks or subtress. You can use the Multiblock Inspector panel for this.

Fig. 2.31 shows the Multiblock Inspector showing the hierarchy from an Exodus dataset. The panel tracks the
active source and reflects the structure for the data produced by the active source. The display properties reflect their
state in the active view.

Multi-block Inspector &)

{5 v v can.ex2
o= « |« | Element Blocks

(L

PN

Q5 v| Unnamed block ID: 1 Type: HEX
@ o v| Unnamed block ID: 2 Type: HEX
SR v| Face Blocks

SR v| Edge Blocks

SR v| Element Sets

({3 o+ 4] Side Sets

O o v| Unnamed set ID: 4

SR v| Face Sets

SR v| Edge Sets

)

o= w || Node Sets
¥ Unnamed set ID: 1
=} ¥ | Unnamed set ID: 100

O

Color Legend:

). using coloring parameters from display

O - color is inherited from a parent node or color map
© - color explicitly specified for this node

Opacity Legend:
+2) - using opacity parameters from display

- opacity is inherited from a parent node
*. opacity explicity specified for this node

Fig. 2.31: The Multiblock Inspector

To show or hide a block you have to click on the checkbox next to the block name. Toggling the visibility of a non-leaf
block, affects the visibility of the entire subtree.

The first column reflects the color used for the block. The color for a block can be specified in multiple ways. First, you
can choose to not use any block specific overrides and simply let the default display properties (Section 1.4.3) affect
the rendering. This is the default behavior. When that is the case for any block, it is indicated in the color column by an

o=
empty dotted circle * =y Second, you can explicitly override the color to use for a block or a subtree. To do this, simply
double click on the color column next to the block of interest. This will pop up the color chooser dialog. Explicitly

overridden color for a block is indicated by a solid filled circle icon I‘:I filled with the selected color. When an explicit

272 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

color is set on a non-leaf node, all its children (and their children) inherit that color unless explicitly overridden. For
such nodes that have a color inherited from their parent, we use the dotted-circle icon filled with a pattern icon O
The second column reflects the opacity override for the blocks. Similar to color, the opacity could be simply using

value from the display properties ;:}, or explicitly set {F, or inhertied from parent node {P

Did you know?

In most cases with multiblock datasets, ParaView uses the vtkBlockColors array for coloring. This is an array filled
with random values so that each block can be colored using a different color. That makes it easier to visually see each
of the blocks in the view. When in this mode, the Multiblock Inspector ‘s color column shows the color used for

each of the blocks using the same icon as the one used for inherited colors i.e. O

You can change colors and opacities for a specific block by double clicking on the corresponding icon. This allows
setting values one at a time. For specifying color and opacity overrides for multiple elements, you can select the items
and then right click to get the context menu. The context menu allows you to change these properties for all the selected
items, as shown in Fig. 2.32.

Multi-block Inspector]

S v V| can.ex2
:s = |#| Element Blocks
Qo | Unnamed block ID: 1 Type: HEX

Tt et
£

!I lln“‘ i =T) C L i =
Show Block(s)

()9 v| Face Blg
(05 v| Edge Bl{ Hide Block(s)
SR RSB Set Block Color(s) ...
A ;:_} ¥ l¥] Side Set h Block Color(s)
O w2} ¥ Unng

%) 7| Face Sel Set Block Opacities ...

Edge Se| Reset Block Opacities
;:} ¥ [¥] Node Se Expand All

=} v | Unnameosermor

v| Unnamed set ID: 100

R
Lopl pl p

e’
-
]
L
<

o

Fig. 2.32: The Multiblock Inspector context menu.

Besides using the Multiblock Inspector to setcolor and opacity overrides for blocks, you can also directly changes
these parameters from the Render View itself. Simply right-click in the render view on the block of interest and you’ll
get a context menu, Fig. 2.33, that allows changing the block properties and are more.

Another useful feature with the Multiblock Inspector is selection. If you simply click on any row in the inspector,
you will select the block (or subtree) and the active view will highlight the selected block(s). Conversely, if you make
a block-based selection in the active Render View using , you will see the corresponding blocks highlighted in the
Multiblock Inspector panel.

2.9. Multiblock Inspector 273

ParaView Users Guide Documentation, Release 5.12.0

ParaView 5.4.1-527-g220F1b5 64-bit

File Edit View Sources Filters Tools Catalyst Macros Help

P BEOWaFRG MA>PDMD Tme o ToJmaxis 43)
B iR 2 € % ' ®walockcoors ~ Surface o Xa it iz O 3@ @ G showalamays bad extractBlocks generate statics good
EOU0DRDOT=2®L Mawax
Pipeline Browser @® | O Layout #1® + Multi-block Inspector a®
B builtin: AR 0B EEEANRTBERAN?LO Renderviewl 0808 v can.ex2
@ ~ [v] Element Blocks

7] Unnamed block ID: 1 Type: HEX
7] Unnamed block ID: 2 Type: HEX
7] Face Blocks
v/ Edge Blocks
7| Element sets
~ [V Side sets
7] Unnamed set ID: 4
7] Face sets
v Edge Sets
~] Node Sets
V| Unnamed set ID: 1
7] Unnamed set ID: 100

Properties Information
Properties ®

) R Delete | 2
Search .. (use Esc to clear text) 53]
= Properties (can.ex2) (9 @ (*
@ Variables

7| £ Object Ids _
V] £ Global Element ids Block ‘Unnamed block ID: 1 Type: HEX'

£ EQPS Hide Block

2 Global Node Ids Show Only Block
Show All Blocks
Unset Block Visibility
Set Block Color

Unset Block Color

Set Block Opacity

Unset Block Opacity
® TMSTEP Hide

Representation
7| Apply Displacements

Color By
Displacement [
Magnitude Edit Color
Edge Blocks Link Camera.

Sets
2 Unnamed set ID: 1
22 Unnamed set ID: 100
£ Unnamed set ID: 4

Color Legend:

01 - using coloring parameters from display
‘O - color is inherited from a parent node o color map
@ - color explicitly specified for this node

Maps

Blocks | Assemblies = Materials

v Blocks
1 [v] Unnamed block ID: 1 Type: HEX
2 v Unnamed block ID: 2 Type: HEX

Opacity Legend:
{3 - using opacity parameters from display
@ - opacity is inherited from a parent node
@ - opacity explicity specified for this node

Color Map Editor | Multi-block Inspector

Fig. 2.33: Context menu in Render View can be used to change block display properties.

2.10 Annotations

Explicit labeling and annotation of particular data values is often an important element in data visualization and analysis.
ParaView provides a variety of mechanisms to enable annotation in renderings ranging from free floating text rendered
alongside other visual elements in the render view to data values associated with particular points or cells.

2.10.1 Annotation sources

Several types of text annotations can be added through the Sources > Alphabetical menu. Text from these sources
is drawn on top of 3D elements in the render view. All annotation sources share some common properties under the
Display section of the Properties panel. These include Font Properties such as the font to use, the size of the
text, its color, opacity, and justification, as well as text effects to apply such as making it bold, italic, or shadowed.

Font Properties

Arial e 200 [hoe (2IBHT IS E

Fig. 2.34: Font property controls in annotation sources and filters.

There are three fonts available in ParaView: Arial, Courier, and Times. You can also supply an arbitrary TrueType
font file (*.ttf) to use by selecting the File entry in the popup menu under Font Properties and clicking on the . . .
button to the right of the font file text field. A file selection dialog will appear letting you choose a font file from the
file system on which paraview (or pvpython) is running.

The remaining display properties control where the text is placed in the render view. There are two modes for placement,

274 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

one that uses predefined positions relative to the render view, and one that enables arbitrary interactive placement in the
render view. The first mode is active when the Use Window Location checkbox is selected. It enables the annotation
to be placed in one of the four corners of the render view or centered horizontally at the top or bottom of the render
view. Buttons with icons representing the location are shown in the Pipeline browser. These buttons correspond to
locations in the render view as depicted in Fig. 2.35.

Fig. 2.35: Annotation placement buttons and where they place the annotation.

The second mode, activated by clicking the Lower Left Corner checkbox, lets you arbitrarily place the annotation.
If the Interactivity property is enabled, you can click and drag the annotation in the render view to place it, or
you can manually enter a location where the lower left corner of the annotation’s bounding box should be placed.
The coordinates are defined in terms of fractional coordinates that range from [0, 1] in the x and y dimensions. The
coordinate system of the render view has a lower left origin, so a Lower Left Corner value of [0, O] will place the
annotation in the lower left corner of the render view.

Text source

The Text source enables you to add a text annotation in the render view. It has one property defining what text is
displayed. Text can be multiline, and it can contain numbers and unicode characters. Text may also contain Mathtex
expressions between starting and ending dollar signs. Mathtext expressions are a subset of TeX math expressions [dt]
. When Mathtext is used, the text can only be on a single line.

2.10. Annotations 275

ParaView Users Guide Documentation, Release 5.12.0

Fig. 2.36: An example of the Text source annotation in the upper left corner with a math expression rendered from a
Mathtext [dt] expression.

Annotate Time source

The Annotate Time source is nearly identical to the Text source, but it also offers access to the current time value
set in ParaView. Control over the format of the time display is available through the Format property. This property
takes a string with optional formatting sections understood by the fmt library. By default, the value is “Time: {time:f}”
where the “time” term inside the curly braces is replaced with ParaView’s current time value, and the “:f”” specifies that
it should be formatted as a float with six decimal digits. For other formatting possibilities, please see the fmt syntax
description at https://fmt.dev/latest/syntax.html. Examples are near the bottom of that page.

2.10.2 Annotation filters

The annotation sources described in the previous section are available for adding text annotations that do not depend on
any loaded datasets. To create annotations that show values from an available data source in the Pipeline Browser
, several annotation filters are available. The properties available to change the text font and annotation location are
exactly the same as those available for the annotation sources described in the previous section.

Annotate Attribute Data filter

The Annotate Attribute Data makes it possible to create an annotation with a data value from an array (or at-
tribute) in a dataset. To use the filter, first select the data array with the data of interest in the Select Input Array.
These arrays may be point, cell, or field data arrays. The Element Id property specifies the index of the point or cell
whose value should be shown in the annotation. If the selected input array is a field array (not associated with points
or cells), the Element Id specifies the tuple of the array to show. When running in parallel, the Process Id denotes
the process that holds the array from which the value should be obtained.

The Prefix text property precedes the attribute value in the rendered annotation. There is no formatting string - the
number is appended after the prefix. If the array value selected is a scalar value, the annotation will contain just the

276 Chapter 2. ParaView Reference Manual

https://fmt.dev/latest/syntax.html

ParaView Users Guide Documentation, Release 5.12.0

ene ParaView 5.6.0 64-bit

& BRERO » a Fa @ I <l > 0> Pfl & mme: ooozsesez (26 |2 maxis43) @‘ @“

i @ 5 e e : X ddike 2 BEEG

[<]-] Pipeine rowser +
H buittin F 0 N KL E A 72 R RenderViewl M H 0 ® O
- Velocity at 200 Is: (-1705.13293457 -665.50152588 -3541,12304688)

@ @ MorgeBlacks]
+ @ AnnotateAttributeDatal

Reset *® Delete ?
Searcl (use Esc 1o clear text)
= Properties (Annotater 3 B & W
Select INDULATTSY & yEL
Process id)
Prefix Velocity at 200 is:
= Display (TextSourceRe, 3 B & W

B interactivity

Font Properties

aia @5 |20 oo |2 [B][T][S][E

(o}
T
=
é:»
=
o
>

Fig. 2.37: Properties of the Annotate Attribute Data filter.

number. On the other hand, if the array value is from a multicomponent array, the individual components will be added
to the annotation label in a space-separated list that is surrounded by parentheses.

Annotate Global Data filter

Some file formats include the concept of global data, a single data value stored in the data array for each time step.
ParaView stores the set of such data values as a field data array associated with the dataset with the same number of
values as timesteps. To display these global values in the render view, use the Annotate Global Data filter. The
Select Arrays popup menu shows the available field data arrays. The Prefix and Suffix properties come before
and after the data value in the annotation, respectively. The Format property is a C language number format specifier
as you would use in a printf function call. The filter will provide a warning if the format is invalid for the global
data type.

Annotate Time Filter

A nice feature of ParaView is that it supports data sources that produce different data at different times. Examples
include file readers that read in data for a requested time step and certain temporal filters. Each data source advertises
to ParaView the time values for which it can produce data. The data produced and displayed in ParaView depends on
the time you set in the ParaView VCR Controls or Time Inspector panel.

What is even nicer is that you can have several data sources that each advertise and respond to a possibly unique set
of times. That is, available sources do not need to advertise that they support the same set of time points - in fact,
they may define data at entirely different time points. Given a requested time, each data source will produce the data
corresponding to the time it supports closest to the requested time. This features makes it possible to create animations
from multiple datasets varying at different time resolutions, for instance.

While the Annotate Time source described earlier can be used to display ParaView’s currently requested time, it does
not show the time value to which a particular data source is responding. For example ParaView may be requesting

2.10. Annotations 277

ParaView Users Guide Documentation, Release 5.12.0

data for time 5.0, but if a source produces data for time values 10.0 and above, it will produce the data for time 10.0,
even though time 5.0 was requested. To show the time for which a data source is producing data, you can instead use
the Annotate Time Filter . Simply attach it to the source of interest. If several data sources are present, a separate
instance of this filter may be attached to each one.

Control over the format of the time display is available through the Format property. The format string is a string
supported by the fmt library and defaults to “Time: {time:f}” where the “time” string inside the curly braces is replaced
by the currently loaded time value of the data source to which this filter is attached. This filter also includes Shift and
Scale properties used to linearly transform the displayed time. The time value is first multiplied by the scale and then
the shift is then added to it.

Environment Annotation filter

If you want to display information about the environment in which a visualization was generated, use the Environment
Annotation filter. By attaching this filter to a data source, you can have it automatically display your user name on
the system running ParaView, show which operating system was used to generate it, present the date and time when
the visualization was generated, and show the file name of the source data if applicable. Each of these items can be
enabled or disabled by checkboxes in the Properties panel for this filter.

If the input source for this filter is a file reader, the File Name property is initialized to the name of the file. A checkbox
labeled Display Full Path is available to show the full path of the file, but if unchecked, only the file name will
be displayed. This default file path can be overridden by changing the text in the File Name property. If this filter
is attached to a filter instead of a reader, the file path will be initialized to an empty string. It can be changed to the
original file name manually, or an arbitrary string if so desired.

Python Annotation filter

The most versatile annotation filter, the Python Annotation filter, offers the most general way of generating anno-
tations that include information about the dataset. Values from point, cell, field, and row data arrays may be accessed
and combined with mathematical operations in a short Python expression defined in the Expression property. The
type of data arrays available for use in the Expression is set with the Array Association property.

Before going further, let’s look at an example of how to use the Python Annotation filter. Assume you want to show
a data value at from a point array named Pressure at point index 22. First, set the Array Association to Point
Data to ensure point data arrays can be referenced in the Python annotation expression. To show the pressure value at
point 22, set the Expression property to

[Pressure[ZZ] }

= Properties (Pythonfnn 3 . % I
Array Association point Data E’j

Expression Pressure[22)

Fig. 2.38: An example of a basic Python Annotation filter showing the value of the Pressure array at point 22.

You can augment the Python expression to give the annotation more meaning. To add a prefix, set the Expression to

['Pressure: ' % (Pressure[22]) J

278 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

noindent All data arrays in the chosen association are provided as variables that can be referenced in the expression as
long as their names are valid Python variables. Array names that are invalid Python variable names are available through
a modified version of the array name. This sanitized version of the array name consists of the subset of characters in
the array name that are letters, numbers, or underscore (_) joined together without spaces in the order in which they
appear in the original array name. For example, an array named Velocity X will be made available in the variable
VelocityX.

Point and cell data in composite datasets such as multiblock datasets is accessed somewhat differently than point or
cell data in non-composite datasets. The expression

[Pressure[ZZ] J

retrieves a single scalar value from a point array in a non-composite dataset, the same expression retrieves the 22nd
element of the Pressure array in each block. These values are held in a VTKCompositeDataArray, which is a data
structure that holds arrays associated with each block in the dataset. Hence, when the expression

[Pressure[ZZ] J

is evaluated on a composite dataset, the value returned and displayed is actually an assemblage of array values from
each block. To access the value from a single block, the array from that block must be selected from the Arrays
member of the result VTKCompositeDataArray. To show the Pressure value associated with 22nd point of block 2,
for example, set the expression to

[Pressure[ZZ] .Arrays[2]]

This expression yields a single data value in the rendered annotation, assuming that the Pressure array has a single
component. To show a range of array values, use a Python range expression in the index into the Pressure field, e.g.,

[Pressure[22:24] .Arrays[2] J

This will show the Pressure values for points 22 and 23 from block 2. You can also retrieve more than one array
using an index range on the Arrays member, e.g.,

[Pressure[22:24] .Arrays[2:5]]

This expression evaluates to Pressure for points 22 and 23 for blocks 2, 3, and 4.

The Array Association is really a convenience to make the set of data arrays of the given association available as
variables that can be used in the Expression . The downside of using these array names is that arrays from only one
array association are available at a time. That means annotations that require the combination of a cell data array and
point data array, for example, cannot be expressed with these convenience Python variables alone.

Fortunately, you can access any array in the input to this filter with a slightly more verbose expression. For example,
the following expression multiplies a cell data value by a point data value:

[inputs[@] .CellData['Volume'][0] * inputs[0].PointData['Pressure'][0] J

Note that the arrays in the input are accessed in the above example using their original array names.

In the example above, the expression inputs[0] refers to the first input to the filter. While this filter can take only
one input, it is based on the same code used by the Python Calculator (described in Section 1.5.9), which puts its
several inputs into a Python list, hence the input to the Python Annotation filter is referenced as inputs[0] .

In addition to making variables for the current array association available in the expression, this filter provides some
other variables that can be useful when computing an annotation value.

* points : Point locations (available for datasets with explicit points).

e time_value, t_value : The current time value set in ParaView.

2.10. Annotations 279

ParaView Users Guide Documentation, Release 5.12.0

* time_steps, t_steps : The number of timesteps available in the input.
* time_range, t_range : The range of timesteps in the input.
e time_index, t_index : The index of the current timestep in ParaView.

There are some situations where the variables above are not defined. If the input has no explicitly defined points, e.g.,
image data, the points variable is not defined. If the input does not define timesteps, the time_* and t_* variables
are not defined.

Finally, all the capabilities of the Python Calculator, documented in Section 1.5.9,
are available, including the NumPy integration and access to the NumPy and SciPy methods.

Common Errors

The time-related variables are not needed to index into point or cell data arrays. Only the point and cell arrays loaded
for the current timestep are available in the filter. You cannot access point or cell data from arbitrary timesteps from
within this filter.

With the capabilities in this filter, it is possible to reproduce the other annotation sources and filters, as shown below.
* Text source: To produce the text “My annotation”, write "My annotation"

e Annotate Time source: To produce the equivalent of Time: {time:f}, write "Time: %£f" %
time_value

e Annotate Attribute Data filter: To produce the equivalent of setting Select Input Array to EQPS,
Element Id to 0 and Process Id to 0, and Prefix to Value is:, write 'Value is: %.12f' %
(inputs[0].CellData['EQPS'][0]) .

e Annotate Global Data filter: To produce the same annotation as setting Select Arrays to KE, Prefix
to Value is: , Format to %7.5g, and empty suffix, write "Value is: %7.59" % (inputs[0].
FieldData['KE'].Arrays[0] [time_index])

e Annotate Time Filter: To produce the equivalent of setting Format to Time: %f, Shift to 3, and Scale
to 2, write "Time: %f" % (2*time_value + 3).

The examples above are meant to illustrate the versatility of the Python Annotation filter. Using the specialized
annotation sources and filters are likely to be more convenient than entering the expressions in the examples.

2.11 Axes Grid

Oftentimes, you want to render a reference grid in the backgroud for a visualization — think axes in a chart view, except
this time we are talking of the 3D Render View . Such a grid is useful to get an understanding for the data bounds and
placement in 3D space. In such cases, you use the Axes Grid . Axes Grid renders a 3D grid with labels around the
rendered scene. In this chapter, we will take a closer look at using and customizing the Axes Grid.

280 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

2.11.1 The basics

To turn on the Axes Grid for a Render View, you use the Properties panel. Under the View section, you check
the Axes Grid checkbox to turn the Axes Grid on for the active view.

== View (Render View) ; Clld

v | Axes Grid Edit

Center Axes Visibility

Clicking on the Edit button will pop up the Axes Grid properties dialog (Fig. 2.39) that allows you to customize the
Axes Grid. As with the Properties panel, this is a searchable dialog, hence you can use the Search box at the top
of the dialog to search of properties of interest. At the same time, the button can be used to toggle between default and
advanced modes for the panel.

Using this dialog, you can change common properties like the titles (X Title,Y Title, and Z Title), title and
label fonts using Title Font Propertiesand Label Font Properties for each of the axes directions, as well as
the Grid Color . Besides labelling the axes, you can render a grid by checking Show Grid . Once you have the Axes

Grid setup to your liking, you can use the = to save your selections so that they are automatically loaded next time
you launch ParaView. You can always use the to revert back to ParaView defaults.

2.11.2 Use cases

To get a better look at the available customizations, let’s look at various visualizations possible and then see how you can
set those up using the properties on the Edit Axes Grid dialog. In these examples, we use the disk_out_ref. ex2
example dataset packaged with ParaView.

In the images above, on the left is the default Axes Grid . Simply turning on the visibility of the Axes Grid will
generate such a visualization. The axes places always stay behind the rendered geometry even as you interact with the
scene. As you zoom in and out, the labels and ticks will be updated based on visual cues.

To show a grid along the axes planes, aligned with the ticks and labels, turn on the Show Grid checkbox, resulting in
a visualization on the right.

By default, the gridded faces are always the farthest faces i.e. they stay behind the rendered geometry and keep on
updating as you rotate the scene. To fix which faces of the bounding-box are to be rendered, use the Faces To Render

2.11. Axes Grid 281

ParaView Users Guide Documentation, Release 5.12.0

Y Title Font Properties
Arial
Z Title Font Properties
Arial
Face Properties
Faces To Render
Cull Backface
V| Cull Frontface
() Grid Color

Show Grid
V| Show Edges
V| Show Ticks
Label Properties

Axes To Label

V| Label Unique Edges Only
X Axis Label Font Properties
Arial
Y Axis Label Font Properties
Arial
Z Axis Label Font Properties
Arial
X Axis Label Properties
X Axis Notation Mixed
X Axis Precision 2

X Axis Use Custom Labels
Y Axis Label Properties
Y Axis Notation Mixed
Y Axis Precision 2

¥ Axis Use Custom Labels
Z Axis Label Properties
Z Axis Notation Mixed
Z Axis Precision 2

Z Axis Use Custom Labels

=" »

12 O |+[100 ||B| T| S

ip

12 2|0 |+[100 [2||B| T[S

12 2| |+/|roo 2||B|| TS

1k
O
1

12 100 /B[S

12 2/ |+/|roo 2||B| TS

-

& Cancel | Fok

Fig. 2.39: Edit Axes Grid dialog is used to customize the Axes Grid.

282

Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

button (it’s an advanced property, so you may have to search for it using the Seach box in the Edit Axes Grid dialog).
Suppose, we want to label just one face, the lower XY face. In that case, uncheck all the other faces except Min-XY in
menu popped up on clicking on the Faces to Render button. This will indeed just show the min-XY face, however
as you rotate the scene, the face will get hidden as soon as the face gets closer to the camera than the dataset. This
is because, by default, Cull Frontfaces is enabled. Uncheck Cull Frontfaces and ParaView will stop removing
the face as it comes ahead of the geometry, enabling a visualization as follows.

Besides controlling which faces to render, you can also control where the labels are placed. Let’s say we want ParaView
to decide how to place labels along the Y axis, however for the X axis, we want to explicitly label the values 2.5, 0.5,
—0.5, and —4.5. To that, assuming we are the advanced mode for the Edit Axes Grid panel, check X Axis Use
Custom Labels . That will show a table widget that allows you to add values as shown below.

v X Axis Use Custom Labels

1/-45 +

2[-0.5

305

g--.___________________

2.11. Axes Grid 283

ParaView Users Guide Documentation, Release 5.12.0

Using the EI;: button, add the custom values. While at it, let’s also change the X Axis Label Font Properties
and X Axis Title Font Properties to change the color to red and similar for the Y axis, let’s change the color
to green. Increase the title font sizes to 18, to make them stand out and you will get a visualization as follows (below,
left).

Here we see that both sides of the axis plane are labeled. Suppose you only want to label one of the sides, in that case
use the Axes To Label property to uncheck all but Min-X and Min-Y . This will result in the visualization shown
above, right.

2.11.3 Axes Grid in pvpython

In pvpython, Axes Grid is accessible as the AxesGrid property on the render view.

>>> renderView = GetActiveView()

AxesGrid property provides access to the AxesGrid object.
>>> axesGrid = renderView.AxesGrid

To toggle visibility of the axes grid,
>>> axesGrid.Visibility = 1

All properties on the Axes Grid that you set using the Edit Axes Grid dialog are available on this axesGrid object
and can be changed as follows:

>>> axesGrid.XTitle = 'X Title'
>>> axesGrid.XTitleColor = [0.6, 0.6, 0.0]
>>> axesGrid.XAxisLabels = [-0.5, 0.5, 2.5, 3.5]

Note you can indeed use the tracing capabilities described in Section 1.1.6 to determine what Python API to use to
change a specific property on the Edit Axes Grid dialog or use help .

>>> help(axesGrid)
Help on GridAxes3DActor in module paraview.servermanager object:

class GridAxes3DActor (Proxy)
(continues on next page)

284 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

(continued from previous page)

| GridAxes3DActor can be used to render a grid in a render view.
I

| Method resolution order:
| GridAxes3DActor

| Proxy

| __builtin__.object
I

| Methods defined here:
I

I

I

Initialize = aInitialize(self, connection=None, update=True)

Data descriptors defined here:

I
|
| AxesToLabel
I

Set the mask to select the axes to label. The axes labelled will be a subset of.
—the
| axes selected depending on which faces are also being rendered.
|
| CullBackface
| Set to true to hide faces of the grid facing away from the camera i.e. hide all
| back faces.
I
| CullFrontface
| Set to true to hide faces of the grid facing towards from the camera i.e. hide.
~all
front faces.
DataPosition

instead of the translated bounds by setting the DataPosition to match the

I
I
I
| If data is being translated, you can show the original data bounds for the axes
I
| translation applied to the dataset.

I

2.12 Customizing ParaView

ParaView can be customized in a number of ways to tailor it to your preferences and needs. Customization options
include setting general application behavior, customizing default property values used for filters, representations, and
views, and customizing aspects of the paraview client. This chapter describes the different ways to customize Par-
aView.

2.12. Customizing ParaView 285

ParaView Users Guide Documentation, Release 5.12.0

2.12.1 Settings

As with any large application, paraview provides mechanisms to customize some of its application behavior. These
are referred to as application settings . or just settings. Such settings can be changed using the Settings dialog,
which is accessed from the Edit > Settings menu (ParaView > Preferences on the Mac). We have seen parts of this
dialog earlier, e.g., in Section 2.1.2, Section 2.7.12, and Section 2.7.12. In this section, we will take a closer look at
some of the other options available in this dialog.

The Settings dialog is split into several tabs. The General tab consolidates most of the miscellaneous settings.
The Camera tab enables you to change the mouse interaction mappings for the Render View and similar views. The
Render View tab, which we saw earlier in Section 2.7.12 and Section 2.7.12, provides options in regards to rendering
in Render View and similar views. The Color Palette tab is used to change the active color palette.

Using this dialog is not much different than the Properties panel. You have the Search box at the top, which allows
you to search properties matching the input text (Section 2.1.1). The button can be used to toggle between default and
advanced modes.

To apply the changes made to any of the settings, use the Apply or OK buttons. OK will apply the changes and close
the dialog, while Cancel will reject any changes made and close the dialog. Any changes made to the options in this
dialog are persistent across sessions. That is, the next time you launch paraview, you'll still be using the same settings
chosen earlier. To revert to the default, use the Restore Defaults button. You can also manually edit the setting file
as in Section 2.12.2. Furthermore, site maintainers can provide site-wide defaults for these, as is explained in Section
2.12.2.

Next, we will see some of the important options available. Those that are only available in the advanced mode are
indicated as such using the icon. You will either need to toggle on the advanced options with the button or search for
the option using the Search box.

General settings

e General Options

— Show Welcome Dialog : Uncheck this to not show the welcome screen at application startup. You will
need to restart paraview to see the effect.

— Show Save State On Exit: When this is checked paraview will prompt you to save a state file when
you exit the application.

— Crash Recovery : When this is checked, paraview will intermittently save a backup state file as you
make changes in the visualization pipeline. If paraview crashes for some reason, then when you relaunch
paraview, it will provide you with a choice to load the backup state saved before the crash occurred. This
is not 100% reliable, but some users may find it useful to avoid losing their visualization state due to a
crash.

— Force Single Column Menus : On platforms that support multicolumn menus, ensure all menu items
are selectable on low-resolution screens.

e GUI Font

— Override Font : When checked, use a custom font size for the user interface. This overrides the system
default font size.

— Font Size : The size of the font to use for Ul elements.
e View Options

— Default View Type: When paraview starts up, it creates Render View by default. You can use this
option to change the type of the view that is created by default, instead of the Render View . You can
even pick None if you don’t want to create any view by default.

286 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

@ i Settings
IEEETl camers Render View Color Arrays Calor Palette

Search ... (use Esc to clear text) Foy

GUI Font
Override Font: Override the GUI font size. Uncheck to use system default.
Fant Size: Specify the font size in points.

B

Properties Panel Options
Auto Apply: Automatically apply changes in the 'Properties’ panel.
Load All Variables: Load all variables when loading a data set.

Load No Chart Variables: Do not load any variables when loading a 20
chart.

Data Processing Options

Auto Convert Properties: Automatically convert data arrays as needed by

filters including converting cell arrays to point arrays, or vice versa, and

extracting single compoanents from multi-component arrays.
ColorfOpacity Map Range Options

Transfer Function Reset Mode: Color transfer functions (or eolor maps) ane
used to map data values to colors for pseudo coloring. Set the default way
ParaView decides to update the data range used for this mapping. Newly
created transfer functions will update the range according to this setting, but it
can later be changed per transfer function via the transfer function’s "Automatic
Rescale Range Mode' setting.

Clamp and update every timestep

Scalar Bar Mode: Set how ParaView manages showing of color legend bars (or
scalar bars) in render views.

Automatically show andfor hide color bars B

Miscellaneous

Default Time Step: Any time a new dataset with timesteps is cpened, set the
timestep the application should go to by default.,

Go to first timestep B

R Restore Defaults Apply cancel [CISN

Fig. 2.40: Settings dialog in paraview showing the General settings tab.

2.12. Customizing ParaView

287

ParaView Users Guide Documentation, Release 5.12.0

* Properties Panel Options

* Data

Auto Apply: When checked, the Properties panel will automatically apply any changes you make to
the properties without requiring you to click the Apply button. The same setting can also be toggled using
the button in the Main Controls toolbar.

Auto Apply Active Only : This limits the auto-applying to the properties on the active source alone.

Properties Panel Mode : This allows you to split the Properties panel into separate panels as de-
scribed in Section 2.1.2.

Processing Options

Auto Convert Properties: Several filters only work on one type of array, e.g., point data arrays or cell
data arrays. Before using such filters, you are expected to apply the Point Data To Cell Dataor Cell
Data To Point Data filters. To avoid having to add these filters explicitly, you can check this checkbox.
When checked, ParaView will automatically convert data arrays as needed by filters, including converting
cell array to point arrays and vice-versa, as well as extracting a single component from a multi-component
array.

e Color/Opacity Map Range Options

Transfer Function Reset Mode: This setting controls the initial settings for how ParaView will reset
the ranges for color and opacity maps (or transfer functions). This sets the initial value of the Automatic
Rescale Range Mode for newly created color/opacity maps (Section 2.3.2). This setting can be changed
on a per-color map basis after the color map has been created.

Scalar Bar Mode : This settings controls how paraview manages showing the color legend (or scalar
bar) in Render View and similar views.

e Default Time Step Whenever a dataset with timesteps is opened, this setting controls how paraview will
update the current time shown by the application. You can choose between Leave current time unchanged,
if possible, Go to first timestep, and Go to last timestep.

e Animation

Cache Geometry For Animation : This enables caching of geometry when playing animations to at-
tempt to speed up animation playback in a loop. When caching is enabled, data ranges reported by the
Information panel and others can be incorrect, since the pipeline may not have updated.

Animation Geometry Cache Limit : When animation caching is enabled, this setting controls how
much geometry (in kilobytes) can be cached by any rank. As soon as a rank’s cache size reaches this limit,
ParaView will no longer cache the remaining timesteps.

Animation Time Notation : Sets the display notation for the time in the annotation toolbar. Options
are Mixed, Scientific, and Fixed.

Animation Time Precision: Sets the number of digits displayed in the time in the animation toolbar.

e Maximum Number of Data Representation Labels When a selection is labeled by data attributes this is
the maximum number of labels to use. When the number of points/cells to label is above this value then a subset
of this many will be labeled instead. Too many overlapping labels becomes illegible, so this is set to 100 by
default.

288

Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Camera settings

@ @ I Settings

General Render View Color Arrays Color Palette

Search .., (use Esc to clear text) ke

an Interaction Options

Camera 3D Manipulators: Select how interactions are mapped to camera
movements whan in 3D interaction moda.

Left Button Middie Button Right Button

Rotate E Fan E Zoom E
Shift + Roll Rotate E Pan E

crl + Zoom E Rotate E ZoomTohouse
3D Mouse Wheal Factor: Set the wheel motion factor for 3D interaction.

2D Interaction Options

Camera 2D Manipulators: Select how interactions are mapped to camera
mowdments whan n 20 interaction modao.

Left Button Middle Button Right Button
Pan E Roll E Zoom B
Shift + Zoom Zoom E ZoomTolMouse E

Cirl + Roll B ran Raotate
2D Mouse Wheel Factor: Set the wheel motion factor for 2D interaction.

4
— L

Resat Restore Defaults Apply Cancel “

Fig. 2.41: Settings dialog in paraview showing the Camera settings tab.

This tab allows you to control how you can interact in Render View and similar views. Basically, you are setting up
a mapping between each of the mouse buttons and keyboard modifiers, and the available interaction types including
Rotate, Pan, Zoom, etc. The dialog allows you to set the interaction mapping separately for 3D and 2D interaction
modes (see Section 1.4.4).

2.12. Customizing ParaView 289

ParaView Users Guide Documentation, Release 5.12.0

Render View settings

Refer to Section 2.7.12 and Section 2.7.12 for various options available on the Render View tab.

Color Palette

General | Camera | Render View | Color Palette

Color used when solid coloring surfaces and Faces.
") surface
Color used for rendering elements like wireframes, points.
) Foreground
Color used for the edges when using "Surface With wireframe’
representation.
@ tdges
Color used as background For the view.
@ Background
Color used for text and cther annotations.
) Text
Color used for showing selected cells/points.
@ selection
Load Palette: You can explicitly set the colors in the application’s color

palette above or you can load one of the predefined color palettes to
initialize the active palette.

Select palette to load ... =
Select ialette to load ...

screen

= Reset Restore Defaults v Apply | | % Cancel o OK

Fig. 2.42: Settings dialog in paraview showing the Color Palette settings tab.

The Color Palette tab (Fig. 2.42) allows you to change the colors in the active color palette. The tab lists the
available color categories Surface , Foreground , Edges , Background , Text , and Selection. You can manually
set colors to use for each of these categories or load one of the predefined palettes using the Load Palette option. To
understand color palettes , let’s look at an example.

Let’s start paraview and split the active view to create two Render View instances side by side. You may want to
start paraview with the -dr command line argument to stop any of your current settings from interfering with this
demo. Next, show Sphere as Wireframe in the view on the left, and show Cone as Surface in the view on the right.
Also, turn on Cube Axis for Cone . You will see something like Fig. 2.43 (top).

Now let’s say you want to generate an image for printing. Typically, for printing, you’d want the background color to
be white, while the wireframes and annotations to be colored black. To do that, one way is to go change each of the
colors for each each of the views, displays and cube-axes. You can imagine how tedious that will get especially with
larger pipelines. Alternatively, using the Settings dialog, change the active color palette to Print as shown in Fig.
2.42 and then click OK or Apply . The visualization will immediately change to something like Fig. 2.43 (bottom).

Essentially, ParaView allows you to /ink any color property to one of the color categories. When the color palette
is changed, any color property linked to a palette category will also be automatically updated to match the category

290 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

syt acros el

o
PR K> DS Tmelo

i ssls Feoa

Renderview (BIB[[3] ¥+ WA L@ N € E S Renderviews (1[50

Fig. 2.43: The effect of loading the Print color palette as the active palette. The top is the original visualization and
the bottom shows the result after loading the Print palette.

2.12. Customizing ParaView 291

ParaView Users Guide Documentation, Release 5.12.0

color. Fig. 2.44 shows how to link a color property to a color palette category in the Properties panel. Use the tiny
drop-down menu marker to make the menu pop up that shows the color palette categories. Select any one of them
to link that property with the category. The link is automatically severed if you manually change the color by simply
clicking on the button.

Properties =) 3

= Properties
= Display

= View (Render View) iy

Center Axes Visibility
Orientation Axes
® Orientation Axes Visibility
Background
Single color s

_) Color |[} Restore Default

()| Background
@ Edges

@ Foreground
@ selection

Surface

@ Text

Fig. 2.44: Popup menu allows you to link a color property to a color palette category in the Properties panel.}

2.12.2 Custom default settings

The section describes how to specify custom default settings for the properties of sources, readers, filters, represen-
tations, and views. This can be used to specify, for example, the default background color for new views, whether a
gradient background should be used, the resolution of a sphere source, which data arrays to load from a particular file
format, and the default setting for almost any other object property.

The same custom defaults are used across all the ParaView executables. This means that custom defaults specified
in the paraview executable are also used as defaults in pvpython and pvbatch, which makes it easier to set up
a visualization with paraview and use pvpython or pvbatch to generate an animation from time-series data, for
example.

292 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Customizing defaults for properties

The Properties panel in paraview has three sections, Properties , Display , and View . Each section has two
buttons. These buttons are circled in red in Fig. 2.45. The button with the disk icon is used to save the current property
values in that section that have been applied with the Apply button. Property values that have been changed but not
applied with the Apply button will not be saved as custom default settings.

The button with the circular arrow (or reload icon) is used to restore any custom property settings for the object to
ParaView’s application defaults. Once you save the current property settings as defaults, those values will be treated
as the defaults from then on until you change them to another value or reset them. The saved defaults are written to a
configuration file so that they are available when you close and launch ParaView again.

E E Peopariias

Apply Jasat ® Delete L §
I I il

= pProperties (Spherel)) & %) d
Centar 0 f 0
Radius 05
Theta Resolution &
Phi Resolution g

4% Display (GeometryRepresentation)] \ % =

= View (Render View)] " m

Fig. 2.45: Buttons for saving and restoring default property values in the Properties panel.

You can undo your changes to the default property values by clicking on the reload button. This will reset the current
view property values to paraview’s application defaults. To fully restore paraview’s default values, you need to click
the save button again. If you don’t, the restored default values will be applied only to the current object, and new
instances of that object will have the custom default values that were saved the last time you clicked the save button.

2.12. Customizing ParaView 293

ParaView Users Guide Documentation, Release 5.12.0

Example: specifying a custom background color

Suppose you want to change the default background color in the Render View . To do this, scroll down to the View
section of the Properties panel and click on the combo box that shows the current background color. Select a new
color, and click OK . Next, scroll up to the View (Render View) section header and click on the disk button to the
right of the header. This will save the new background color as the default background color for new views. To see
this, click on the + sign next to the tab above the 3D view to create a new layout. Click on the Render View button. A
new render view will be created with the custom background color you just saved as default.

Configuring default settings with JSON

Custom default settings are stored in a text file in the JSON (JavaScript Object Notation) format. We recommend to
use the user interface in paraview to set most default values, but it is possible to set them by editing the JSON settings
file directly. It is always a good idea to make a backup copy of a settings file prior to manual editing.

The ParaView executables read from and write to a file named ParaView-UserSettings. json, which is lo-
cated in your home directory on your computer. On Windows, this file is located at %APPDATA%/ParaView/
ParaView-UserSettings. json, where the APPDATA environment variable is usually something like C: /Users/
USERNAME/AppData/Roaming, where USERNAME is your login name. On Unix-like systems, it is located under ~/
.config/ParaView/ParaView-UserSettings. json. This file will exist if you have made any default settings
changes through the user interface in the paraview executable. Once set, these default settings will be available in
subsequent versions of ParaView.

A simple example of a file that specifies custom default settings is shown below:

{
"sources" : {
"SphereSource" : {
"Radius" : 3.5,
"ThetaResolution" : 32
1
"CylinderSource" : {
"Radius" : 2
}
B
"views" : {
"RenderView" : {
"Background" : [0.0, 0.0, 0.0]
}
}

Note the hierarchical organization of the file. The first level of the hierarchy specifies the group to which the object
whose settings are being specified refers (“sources” in this example). The second level names the object whose settings
are being specified. Finally, the third level specifies the custom default settings themselves. Note that default values
can be set to literal numbers, strings, or arrays (denoted by comma-separated literals in square brackets).

The names of groups and objects come from the XML proxy definition files in ParaView’s source code in the
directory ParaView/ParaViewCore/ServerManager/SMApplication/Resources (ParaView\ParaViewCore\
ServerManager\SMApplication\Resources on Windows systems) . The group name is defined by the name at-
tribute in a ProxyGroup element. The object name comes from the name attribute in the Proxy element (or elements
of vtkSMProxy subclasses). The property names come from the name attribute in the *Property XML elements for
the object.

294 Chapter 2. ParaView Reference Manual

ParaView Users Guide Documentation, Release 5.12.0

Did you know?

The application-wide settings available in paraview through the Edit > Settings menu are also saved to this user
settings file. Hence, if you have changed the application settings, you will see some entries under a group named
“settings”.

Configuring site-wide default settings

In addition to individual custom default settings, ParaView offers a way to specify site-wide custom default settings
for a ParaView installation. These site-wide custom defaults must be defined in a JSON file with the same structure
as the user settings file. In fact, one way to create a site settings file is to set the custom defaults desired in paraview,
close the program, and then copy the user settings file to the site settings file. The site settings file must be named
ParaView-SiteSettings. json.

The ParaView executables will search for the site settings file in several locations. If you installed ParaView in
the directory INSTALL, then the ParaView executables will search for the site settings file in these directories in the
specified order:

* INSTALL/share/paraview-X.Y (INSTALLshareparaview-X.Y in Windows systems)
o INSTALL/lib (INSTALLIib in Windows systems)

e INSTALL

e INSTALL/.. (INSTALL/lib in Windows systems)

where X is ParaView’s major version number and Y is the minor version number. ParaView executables will search
these directories in the given order, reading in the first ParaView-SiteSettings. json file it finds. The conventional
location for this kind of configuration file is in the share directory (the first directory searched), so we recommend
placing the site settings file there.

Custom defaults in the user settings file take precedence over custom defaults in the site settings. If the same default
is specified in both the ParaView-SiteSettings. json file and ParaView-UserSettings. json file in a user’s
directory, the default specified in the ParaView-UserSettings. json file will be used. This is true for both object
property settings and application-settings set through the Edit > Settings menu.

To aid in debugging problems with the site settings file location, you can define an evironment variable named
PV_SETTINGS_DEBUG to something other than an empty string. This will turn on verbose output showing where the
ParaView executables are looking for the site settings file.

2.12. Customizing ParaView 295

ParaView Users Guide Documentation, Release 5.12.0

296 Chapter 2. ParaView Reference Manual

CHAPTER
THREE

CATALYST

Catalyst is an in-situ framework created as part of ParaView a few years ago. With time and use, we saw the different
drawbacks of our approach and then it was decided to create a new architecture, Catalyst API.

With this new implementation, it is:
* easier to implement in your simulation (less knowledge required)
« easier to update from a version to another (less dependencies, has binary compatibility)

* possible to activate Steering mode, where ParaView can modify simulation parameters at runtime

Note: This is documentation for the Paraview implementation of the Catalyst API (Catalyst 2) if you are looking for
information regarding the previous version of catalyst check this manual.

3.1 Getting Started

This is a short introduction on how to use a C++ example from the ParaView code base. This code represents a simple
simulation that makes use of the Catalyst API.

Tip: You can skip cloning the entrire ParaView source code by downloading just the example directory.

Contents of the CxxFullExample directory:
e FEDriver.cxx: the main loop of the simulation
* FEDataStructure. [h,cxx]: simulation files describing the data structures of the driver.

e CatalystAdaptor.h: the interface to the Catalyst library. Data descriptions and catalyst setup happens here.
This is the main file to edit when you adapt the example for another simulation.

e catalyst_pipeline.py: a script called at runtime
e catalyst_pipeline_live.py: Alternative script to call at runtime that enables Live Visualization

e (MakeLists.txt: The CMake code to configure and build the project. It demonstrates how to find the Catalyst
library and link against it.

297

https://catalyst-in-situ.readthedocs.io/en/latest/index.html
https://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf
https://gitlab.kitware.com/paraview/paraview/-/tree/master/Examples/Catalyst2/CxxFullExample
https://gitlab.kitware.com/paraview/paraview/-/archive/master/paraview-master.tar.gz?path=Examples/Catalyst2/CxxFullExample

ParaView Users Guide Documentation, Release 5.12.0

3.1.1 Prerequisites

* MPI
e libcatalyst installed on your system.
e CMake

e ParaView binary (version 5.10.1+)

3.1.2 Building the example

mkdir build

cd build

cmake -DCMAKE_PREFIX PATH=<libcatalyst-install-dir> ../CxxFullExample
cmake --build .

3.1.3 Simple Run

Run the generated executable . /bin/CxxFullExampleV2 with catalyst_script.py as a parameter.

The executable needs to link to the ParaViewCatalyst library at runtime. To achieve this, we initialize
CATALYST_IMPLEMENTATION_PATHS and CATALYST_IMPLEMENTATION_NAME to the path of the ParaViewCatalyst
library and the name of the catalyst library implementation. Finally, we pass catalyst_script.py as script argu-
ment:

export CATALYST_IMPLEMENTATION_PATHS="<paraview-install-dir>/lib/catalyst"
export CATALYST_IMPLEMENTATION_NAME=paraview
./bin/CxxFullExample catalyst_pipeline.py

Expected output:

executing catalyst_pipeline

executing (cycle=0, time=0.0)

bounds: (0.0, 69.0, 0.0, 64.9, 0.0, 55.9)
velocity-magnitude-range: (0.0, 0.0)
pressure-range: (1.0, 1.0)

executing (cycle=1, time=0.1)

bounds: (0.0, 69.0, 0.0, 64.9, 0.0, 55.9)
velocity-magnitude-range: (0.0, 6.490000000000001)
pressure-range: (1.0, 1.0)

Note: Be careful that the MPI version used to build the simulation should be the same as the MPI used by ParaView.
In case of errors, you may have to build ParaView by yourself, so ParaView and simulation share the same version of
MPI. For this tutorial, you can also remove MPI-related lines in the example source code.

298 Chapter 3. Catalyst

https://catalyst-in-situ.readthedocs.io/en/latest
https://cmake.org/download
https://www.paraview.org/download

ParaView Users Guide Documentation, Release 5.12.0

3.1.4 Generating Catalyst Scripts

To specify the pipelines executed each time Catalyst is triggered you can modify the catalyst_script.py directly
or generate one interactively through the ParaView Ul

To generate a catalyst script, assemble your pipelines as usual and append extractor(s) at the end of each pipeline.
Extractors can be created through the Extractors menu and allow to extract and save data as meshes, images or even
tables. Once the pipeline is ready use File > Save Catalyst State to export the state as a Python script which you can
supply to . /bin/CxxFullExampleV2. For more details on extractors see section Extractors in the UserGuide section.

3.1.5 Live Visualization

When saving a Catalyst State you have the option to enable Live Visualization in the export wizard

To create your own script, start creating a pipeline in ParaView. Use Extractors to write your results (screenshots or
meshes). Then use File > Save Catalyst State to export the Python script. Live Visualization is an option you can
enable in the export wizard.

For an example try catalyst_pipeline_live.py to experiment with taking a screenshot and running with live
visualization enabled. You can also load it as a State File to inspect its content.

Use Catalyst > Connect menu in ParaView so ParaView will wait for Catalyst input. Then run your simulation as
explained above. The configured pipeline will appear in your ParaView session.

Tip: Use Catalyst > Pause Simulation before starting the simulation to pause the simulation on the first timestep. This
allows inspection of the pipeline prior to running it. This is also useful for examples which iterate too fast to see the
timestep updates.

Note: When the simulation ends, it breaks the connection with the ParaView application so it is expected to have some
error message like the following:

ERROR: In <paraview_source_dir>/VIK/Parallel/Core/vtkSocketCommunicator.cxx, line 781
vtkSocketCommunicator (0x563b4ch9b5b0): Could not receive tag. 1

ERROR: In <paraview_source_dir>/Remoting/Core/vtkTCPNetworkAccessManager.cxx, line 296
vtkTCPNetworkAccessManager (0x563b457d9000): Some error in socket processing.

3.1.6 Using ParaViewCatalyst in your simulation

To enable the use of ParaViewCatalyst for your simulation code, look at the CatalystAdaptor.h file. It wraps the
main catalyst functions catalyst_* while providing the expected arguments. For the protocols used in each of the
calls see here.

3.1. Getting Started 299

ParaView Users Guide Documentation, Release 5.12.0

3.2 Background

3.2.1 Introduction

Prior to ParaView version 5.9, for a simulation code to use ParaView for in situ processing required developing an
adapter which had two parts: convert simulation data structures to VTK Data Object, and use classes provided by
ParaView (collectively referred to as Catalyst) to initialize, and then execute the analysis pipelines on each simulation
cycle.

Converting simulation data structures to VTK Data Objects is a non-trivial task and requires understanding of how
VTK stores internal arrays and builds data objects. Simple mistakes could result in invalid memory accesses or costly
data-copies impacting memory requirements and performance adversely.

Setting up and invoking ParaView via the Catalyst classes requires creating and using classes such as vtkCPProcessor,
vtkCPPipeline and subclasses, vtkCPInputDataDescription, vtkCPDataDescription, and several others.

In other words, the adapter ended up with a lot of ParaView-specific C++ code that potentially changed between each
version of ParaView and needed updates to accommodate newly added capabilities.

Since the simulation directly links against the custom Catalyst adapter developed specifically for the simulation, the
simulation too is tightly coupled to a specific version of ParaView. Once built, it isn’t possible to switch which version
of ParaView is being used without rebuilding the adapter and the simulation.

To build an adapter, you need a ParaView SDK. Since official ParaView binaries do not provide headers and libraries
that would comprise an SDK, you have to build ParaView from source. That itself can be a daunting task adding further
to the complexity and learning curve.

To minimize several of these challenges, we revisited the design and implementation of the various components in-
volved. To avoid confusion, all the Catalyst and in situ components described so far that are available prior to ParaView
5.9 are referred to as Legacy.

3.2.2 Catalyst and ParaView-Catalyst

The new design is built on the following key components:
* A stable API that simulation codes can use to describe data and invoke in situ processing pipelines.
* A lightweight implementation of this API that can be used to build simulations when using this API.

¢ Animplementation of this API that uses ParaView for data processing that is ABI compatible with the lightweight
implementation and hence can be dynamically replaced at load-time when launching the simulation.

The stable API is now called the Catalyst APL. It is a C-only API (wrapped also in C++ and with bindings available
for Python and Fortran) that includes mechanisms to describe data and other control parameters (using Conduit API)
and trigger in situ processing. It is provided in a separate project together with a lightweight implementation called the
stub.

The compatible ParaView-specific implementation of the Catalyst API is now called ParaView-Catalyst and is built and
distributed as part of the ParaView distribution. ParaView-Catalyst Blueprint describes parameters supported by this
Catalyst implementation for providing scripts to load, computational meshes etc.

A typical Catalyst adapter developed for a specific simulation, in this new approach, no longer directly builds VTK
data objects. Instead the adapter simply describes its data structures using an implementation supported protocol.
ParaView-Catalyst, the canonical implementation of the Catalyst API that uses ParaView, provides several ways of
describing data and will continue to evolve to include a large set of data-structures and memory layouts used by codes.

If that’s not adequate, developers can develop their own custom implementation for the Catalyst API. Such implemen-
tations are of course free to use whatever data processing and visualization libraries the developers choose. They can

300 Chapter 3. Catalyst

https://catalyst-in-situ.readthedocs.io/en/latest
https://llnl-conduit.readthedocs.io/en/latest
https://gitlab.kitware.com/paraview/catalyst

ParaView Users Guide Documentation, Release 5.12.0

also use vtkInSituInitializationHelper, vtkInSituPipeline and subclasses, to use ParaView as the in situ
processing engine.

3.3 ParaView-Catalyst Blueprint

3.3.1 Background

Starting with ParaView 5.9, ParaView distribution provides an implementation of the Catalyst API . This implemen-
tation is now referred to as ParaView-Catalyst. Thus, it is an implementation of the Catalyst In Situ API that uses
ParaView for data processing and rendering.

The Catalyst in situ API comprises of 5 function calls that are used to pass data and control over to the
Catalyst implementation from computational simulation codes: catalyst_initialize, catalyst_execute,
catalyst_results, catalyst_finalize and catalyst_about. Each of these functions is passed a Conduit
Node object. Conduit Node provides a flexible mechanism for describing hierarchical in-core scientific data. Since
a Conduit Node is simply a light-weight container, we need to define the conventions used to communicate relevant
data in each of the Catalyst API calls. Such conventions are collectively referred to as the Blueprint. Each Catalyst
API implementation can develop its own blueprint. ParaView-Catalyst, the Catalyst API implementation provided by
ParaView, also defines its blueprint called the ParaView-Catalyst Blueprint. This page documents this blueprint.

3.3.2 Protocol

A blueprint often includes several protocols, each defining the conventions for a specific use-case. Since there are
three main Catalyst API functions, the blueprint currently defines three protocols, one for each of these Catalyst API
functions.

* protocol: initialize: defines the options accepted by catalyst_initialize; these include things like
adding ParaView Python scripts to load.

 protocol: execute: defines the protocol for catalyst_execute and includes information about Catalyst chan-
nels i.e. ports on which data is made available to in situ processing as well as the actual data from the simulation.

* protocol: finalize: defines the protocol for catalyst_finalize; currently, this is empty.

In each of the Catalyst API calls, ParaView looks for a top-level node named catalyst. The expected children vary
based on the protocol described in the following sub-sections.

These top-level protocols use other internal protocols e.g. channel.

protocol: initialize

Currently, the initialize protocol defines how to pass scripts to load for analysis.

e catalyst/scripts: (optional) if present must either be a 1ist or object node with child nodes that provides
paths to the Python scripts to load for in situ analysis.

e catalyst/scripts/[name]: (optional) if present can be a string or object. If it is a string it is interpreted
as path to the Python script. If it is an object it can have the following attributes.

— catalyst/scripts/[name]/filename: path to the Python script

— catalyst/scripts/[name]/args: (optional) if present must be of type list with each child node
of type string. To retrieve these arguments from the script itself use the get_args() method of the
paraview catalyst module.

Additionally, one can provide a list of pre-compiled pipelines to use.

3.3. ParaView-Catalyst Blueprint 301

https://catalyst-in-situ.readthedocs.io/
https://llnl-conduit.readthedocs.io/en/latest/tutorial_cpp_basics.html
https://llnl-conduit.readthedocs.io/en/latest/tutorial_cpp_basics.html
https://kitware.github.io/paraview-docs/latest/python/paraview.catalyst.html

ParaView Users Guide Documentation, Release 5.12.0

e catalyst/pipelines: (optional) if present must be a 1ist or object node with child nodes that are objects
that provide type and parameters for hard-coded pipelines to use. Each object must be in accordance to the
protocol: pipeline.

In MPI-enabled builds, ParaView is by default initialized to use MPI_COMM_WORLD as the global communicator. A
specific MPI communicator can be provided as follows:

e catalyst/mpi_comm: (optional) if present, must be an integer representing the Fortran handle for the MPI
communicator to use. The Fortran handle can be obtained from MPI_Comm using MPI_Comm_c2£().

protocol: execute

Defines how to communicate data during each time-iteration.
time/timestep/cycle: this defines temporal information about the current invocation.

e catalyst/state/timestep: (optional) integral value for current timestep. if not specified, catalyst/cycle
is used.

* catalyst/state/cycle: (optional) integral value for current cycle index, if not specified, 0 is assumed.
e catalyst/state/time: (optional) float64 value for current time, if not specified, 0.0 is assumed.

* catalyst/state/parameters: (optional) list of optional runtime parameters. If present, they must be of type
1ist with each child node of type string.

e catalyst/state/multiblock: (optional) integral value. When present and set to 1, output will be a legacy
vtkMultiBlockDataSet.

channels: channels are used to communicate simulation data. The channels node can have one or more children, each
corresponding to a named channel. A channel represents a data-source in the analysis pipeline that is linked to the
data being produced by the simulation code. Most simulation adapters will only have a single channel. Multi-physics
simulation codes will likely have multiple channels, one channel for each type of physics being simulated (e.g. a channel
for the fluid domain and a channel for the structured domain for a fluid-structure interaction simulation).

e catalyst/channels/[channel-name]: (protocol: channel): (optional) if present represents a named chan-
nel with the name channel-name. The node must be an object node satisfying the channel protocol.

The channel protocol is as follows:

* channel/type: (required) a string representing the channel type. Currently, the only supported values are mesh
and multimesh.

mesh is used to indicate that this channel is specified in accordance to the Conduit Mesh protocol.
multimesh is an extension for multi-domain meshes (also called multiblocks) and is described later.

e channel/data: (required) an object node used to communicate the simulation data on this channel. This node
must match the protocol requirements identified by the channel/type.

e channel/data/state/fields/[field-name]: (optional) defines extra fields associated to the current mesh.
Each field is not associated to any topology and it could be a string, a numerical array or an array following the
MCArray Blueprint protocol. In ParaView Catalyst, the each field will be added as a Field Data array to the
generated VTK object.

e channel/state: (optional) fields to optionally override the catalyst/state temporal information.
e channel/state/timestep: (optional) if present, overrides catalyst/state/timestep for this channel.

e channel/state/cycle: (optional) if present, overrides catalyst/state/cycle for this channel.

302 Chapter 3. Catalyst

https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html
https://llnl-conduit.readthedocs.io/en/latest/blueprint_mcarray.html

ParaView Users Guide Documentation, Release 5.12.0

e channel/state/time: (optional) if present, overrides catalyst/state/time for this channel. A channel
will default to using the catalyst/state/ values for these parameters for each channel /state parameter not
specified.

e channel/state/multiblock: (optional) if present, overrides catalyst/state/multiblock for this chan-
nel.

protocol: finalize

Currently, this is empty.

protocol: pipeline

Defines type and parameters for a hard-coded pipeline.

¢ type: (required) a string identifying the type of the pipeline.
Currently supported value is io.

When type is io, the following attributes are supported.

e filename: (required) a string representing a filename. {timestep} may be used to replace with timestep or
{time} may be used to replace with time value. You can use fmt style format specifiers e.g. {time:03£} etc.
The filename may be used to determine which supported writer to use for saving the data.

e channel: (required) a string identifying the channel by its name.

protocol: multimesh

This is the protocol used for the channel/data when the channel/type is set to “multimesh”.

e channel/data/[block-name]: (protocol: mesh): (optional) if present, represents an individual mesh/block
described using the Conduit Mesh protocol. This can be repeated for multiple blocks. block-name must be
unique for each blocks.

* channel/assembly: (optional) if present, can be used to define arbitrary hierarchical relationships between
individual meshes/blocks in the mutlimesh. For example, for two blocks named blockA and blockB, following
is a possible hierarchy. Thus all nodes are either object, list or string, and if string, must refer to a valid block
name.

channel/assembly/
AllBlocks: [“blockA”, “blockB”]
BlockA: “blockA”
BlockB: “blockB”
SubGroup/
AnotherChild: “blockA”

3.3. ParaView-Catalyst Blueprint 303

https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html

ParaView Users Guide Documentation, Release 5.12.0

3.4

Fides Reader

An alternative to Mesh Blueprints is using the Fides reader. Fides uses a different data model based around JSON and
ADIOS2. More details about the Fides Data Model page. An example of using ParaViewCatalyst with Fides is located

here.

3.5

Examples for Simulation Developers

These examples reside in the ParaView repository and are part of ParaView’s CI process. The core differences are in
the Adaptor class of each example which is where the simulation data are converted to a conduit node and passed to
ParaView for processing. For a detailed example regarding the structure of a Catalyst Adaptor see here

To experiment with any example click on the download directory button in the GitLab interface and follow the instruc-
tions of Getting Started section.

3.6

C driver that creates unstructured mesh in a single channel [code]

C++ driver that creates unstructured mesh in a single channel [code]

Fortran90 driver that creates uniform mesh in a single channel [code]

Python driver that creates a uniform mesh in a single channel [code]

C++ driver that creates uniform mesh and passes arguments to the catalyst script [code]

C++ driver that creates 2 multiblock unstructured meshes each one on its dedicated channel [code]
C++ driver that uses the multimesh protocol [code]

C++ driver that utilizes a polygonal mesh [code]

C++ driver that utilizes a polyhedral mesh [code]

C++ dirver that utilizes an overlapping AMR dataset [code]

C++ driver that utilizes steering mode, where one can modify simulation parameters at runtime [code]

Debugging Tips

Set the environmental variable PARAVIEW_LOG_CATALYST_VERBOSITY to INFO to increase the verbosity
of messages at the ParaViewCatalyst level.

Dump the conduit nodes passed to Catalyst for inspection using Catalyst Replay,

Use Catalyst Player to iterate through times-series files from disk to emulate a simulation.

304

Chapter 3. Catalyst

https://fides.readthedocs.io/en/latest
https://fides.readthedocs.io/en/latest/schema/schema.html
https://fides.readthedocs.io/en/latest/paraview/paraview.html#in-situ-visualization-with-paraview-catalyst-and-fides
https://gitlab.kitware.com/paraview/paraview/-/tree/master/Examples/Catalyst2/CxxFullExample/CatalystAdaptor.h
https://gitlab.kitware.com/paraview/paraview/-/tree/master/Examples/Catalyst2/CFullExample
https://gitlab.kitware.com/paraview/paraview/-/tree/master/Examples/Catalyst2/CxxFullExample
https://gitlab.kitware.com/paraview/paraview/-/tree/master/Examples/Catalyst2/Fortran90FullExample
https://gitlab.kitware.com/paraview/paraview/-/tree/master/Examples/Catalyst2/PythonFullExample
https://gitlab.kitware.com/paraview/paraview/-/tree/master/Examples/Catalyst2/CxxImageDataExample
https://gitlab.kitware.com/paraview/paraview/-/tree/master/Examples/Catalyst2/CxxMultiChannelInputExample
https://gitlab.kitware.com/paraview/paraview/-/tree/master/Examples/Catalyst2/CxxMultimesh
https://gitlab.kitware.com/paraview/paraview/-/tree/master/Examples/Catalyst2/CxxPolygonal
https://gitlab.kitware.com/paraview/paraview/-/tree/master/Examples/Catalyst2/CxxPolyhedra
https://gitlab.kitware.com/paraview/paraview/-/tree/master/Examples/Catalyst2/CxxOverlappingAMRExample
https://gitlab.kitware.com/paraview/paraview/-/tree/master/Examples/Catalyst2/CxxSteeringExample
https://catalyst-in-situ.readthedocs.io/en/latest/catalyst_replay.html
https://gitlab.kitware.com/paraview/catalyst-player

CHAPTER
FOUR

PARAVIEW TUTORIALS

Tutorials are split in Self-directed Tutorials and Classroom Tutorials:

Self-directed Tutorial’s Section 4.1.1 to Section 4.1.5 provide an introduction to the ParaView software
and its history, and exercises on how to use ParaView that cover basic usage, batch Python scripting and
visualizing large models.

Classroom Tutorials’s Section 4.2.1 to Section 4.2.18 provide beginning, advanced, Python and batch,
and targeted tutorial lessons on how to use ParaView that are presented as a 3-hour class internally within
Sandia National Laboratories.

4.1 Self-directed Tutorial

Self-directed Tutorial provides an introduction to the ParaView software and its history, and exercises on how to
use ParaView that cover basic usage, batch python scripting and visualizing large models. This tutorial was created
by Kenneth Moreland at Sandia National Laboratories, has written guidance and background and can be followed
independently.

Thanks to Amy Squillacote, David DeMarle, and W. Alan Scott for contributing material to this tutorial. And, of
course, thanks to everyone at Kitware, Sandia National Laboratories, Los Alamos National Laboratory, and all other
contributing organizations for their hard work in making ParaView what it is today.

This work was supported by the Director, Office of Advanced Scientific Computing Research, Office of Science, of
the U.S. Department of Energy under Contract No. 12-015215, through the Scientific Discovery through Advanced
Computing (SciDAC) Institute of Scalable Data Management, Analysis and Visualization.

[cMom

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View,
CA 94042, USA.

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engi-
neering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

lI'! Sandia National Laboratories

ENT Op

U.S. DEPARTMENT OF

ENERGY

305

http://creativecommons.org/licenses/by/4.0/

ParaView Users Guide Documentation, Release 5.12.0

4.1.1 Introduction

ParaView is an open-source application for visualizing two- and three-dimensional datasets. The size of the datasets
ParaView can handle varies widely depending on the architecture on which the application is run. The platforms
supported by ParaView range from single-processor workstations to multiple-processor distributed-memory super-
computers or workstation clusters. Using a parallel machine, ParaView can process very large data sets in parallel
and later collect the results. To date, ParaView has been demonstrated to process billions of unstructured cells and to
process over a trillion structured cells. ParaView’s parallel framework has run on over 100,000 processing cores.

ParaView’s design contains many conceptual features that make it stand apart from other scientific visualization solu-
tions.

* An open-source, scalable, multi-platform visualization application.
 Support for distributed computation models to process large datasets.
¢ An open, flexible, and intuitive user interface.

* An extensible, modular architecture based on open standards.

* A flexible BSD 3-clause license.

* Commercial maintenance and support.

Readers’Choice
Awards (]

Editors’Choice
Awards) 1(]

ParaView is used by many academic, government, and commercial institutions all over the world. ParaView’s open
license makes it impossible to track exactly how many users ParaView has, but it is thought to be many thousands
large based on indirect evidence. For example, ParaView is downloaded roughly 100,000 times every year. ParaView
also won the HPCwire Readers’ Choice Award in 2010 and 2012 and HPCwire Editors’ Choice Award in 2010 for Best
HPC Visualization Product or Technology.

Fig. 4.1: ZSU23-4 Russian Anti-Aircraft vehicle being hit by a planar wave. Image courtesy of Jerry Clarke, US Army
Research Laboratory.

As demonstrated in these visualizations, ParaView is a general-purpose tool with a wide breadth of applications. In
addition to scaling from small to large data, ParaView provides many general-purpose visualization algorithms as well

306 Chapter 4. ParaView Tutorials

ParaView Users Guide Documentation, Release 5.12.0

Fig. 4.2: A loosely coupled SIERRA-Fuego-Syrinx-Calore simulation with 10 million unstructured hexahedra cells of
objects-in-crosswind fire.

4.1. Self-directed Tutorial 307

ParaView Users Guide Documentation, Release 5.12.0

Fig. 4.3: Simulation of a Pelton turbine. Image courtesy of the Swiss National Supercomputing Centre.

308 Chapter 4. ParaView Tutorials

ParaView Users Guide Documentation, Release 5.12.0

Fig. 4.4: Airflow around a Le Mans Race car. Image courtesy of Renato N. Elias, NACAD/COPPE/UFRIJ, Rio de
Janerio, Brazil.

as some specific to particular scientific disciplines. Furthermore, the ParaView system can be extended with custom
visualization algorithms.

ParaView Client | pvpython | ParaWeb | Catalyst | Custom App

Ul (Qt Widgets, Python Wrappings)

ParaView Server

VTK

OpenGL MPI lceT Etc.

The application most people associate with ParaView is really just a small client application built on top of a tall
stack of libraries that provide ParaView with its functionality. Because the vast majority of ParaView features are
implemented in libraries, it is possible to completely replace the ParaView GUI with your own custom application.
Furthermore, ParaView comes with a application that allows you to automate the visualization and post-processing
with Python scripting.

Available to each ParaView application is a library of user interface components to maximize code sharing between
them. A library provides the abstraction layer necessary for running parallel, interactive visualization. It relieves the
client application from most of the issues concerning if and how ParaView is running in parallel. The Visualization

4.1. Self-directed Tutorial 309

ParaView Users Guide Documentation, Release 5.12.0

Toolkit (VTK) provides the basic visualization and rendering algorithms. VTK incorporates several other libraries
to provide basic functionalities such as rendering, parallel processing, file I/O, and parallel rendering. Although this
tutorial demonstrates using ParaView through the ParaView client application, be aware that the modular design of
ParaView allows for a great deal of flexibility and customization.

Development and Funding

The ParaView project started in 2000 as a collaborative effort between Kitware Inc. and Los Alamos National Lab-
oratory. The initial funding was provided by a three year contract with the US Department of Energy ASCI Views
program. The first public release, ParaView 0.6, was announced in October 2002. Development of ParaView contin-
ued through collaboration of Kitware Inc. with Sandia National Laboratories, Los Alamos National Laboratories, the
Army Research Laboratory, and various other academic and government institutions.

In September 2005, Kitware, Sandia National Labs and CSimSoft started the development of ParaView 3.0. This was
a major effort focused on rewriting the user interface to be more user friendly and on developing a quantitative analysis
framework. ParaView 3.0 was released in May 2007.

Since this time, ParaView development continues. ParaView 4.0 was released in June 2013 and introduced more
cohesive GUI controls and better multiblock interaction. Subsequent releases also include the Catalyst library for in
situ integration into simulation and other applications. ParaView 5.0 was released in January 2016 and provided a
major update to the rendering system. The new rendering takes advantage of OpenGL 3.2 features to provide huge
performance improvements. Subsequent releases also added support for ray cast rendering with the OSPRay library.

Development of ParaView continues today. Sandia National Laboratories continues to fund ParaView development
through the ASC project. ParaView is part of the SciDAC Scalable Data Management, Analysis, and Visualization
(SDAV) Institute Toolkit https://sdav-scidac.org. The US Department of Energy also funds ParaView through Los
Alamos National Laboratories and various SBIR projects and other contracts. The US National Science Foundation
also often funds ParaView through SBIR projects. Other institutions also have ParaView support contracts: Electricity
de France, Mirarco, and oil industry customers. Also, because ParaView is an open source project, other institutions
such as the Swiss National Supercomputing Centre contribute back their own development.

Basics of Visualization

0265640 132304 133732 022051 037334 024721 01501% 052226 001662
02ESEE0 025537 0G4E6E2 054606 043244 074076 124153 135216 126614
0265700 144210 056426 044700 042650 165230 137037 003655 006254
0265720 134453 124327 176005 027034 107614 170774 073702 067274
0265740 072451 007735 147620 061064 157435 113057 155356 114603
QZES7E0 107204 102316 171451 046040 120223 001774 030477 046673
0266000 171317 116055 155117 134444 167210 041405 147127 050505
0266020 004137 046472 124015 134360 173550 053517 044635 021135
0266040 070176 047705 113754 175477 105532 076515 177366 056333
Q2EE0ED 041022 074017 127112 003214 037026 037640 066171 123424
02EE100 067701 027406 140000 165341 072410 100032 125455 OSEE4E
0ZEE120 006716 071402 055672 132871 105e45 170073 050376 072117
0266140 024451 007424 114200 077733 024434 012546 172404 102345
0266160 040223 050170 055164 164634 047154 126525 112514 032315
0266200 016041 176055 042766 025015 176314 017234 110060 014515
0266220 117156 030746 154234 128001 151144 163706 136237 164376
0266240 137055 062276 161755 11C466 005322 122567 073216 002655
Q2EE2E0 171466 126161 1171EC OECT7EZ 016177 014460 112765 OEEE27
Q2EE300 002767 17E267 104754 026436 172172 150750 042643 14C410
QZEE320 072074 000007 040827 070EEE 173011 002151 125132 140214
0266340 060115 014356 015164 067027 120206 070242 033065 131334
0266360 170601 170106 040437 127277 124446 136631 041462 116321
0266400 020243 005602 004146 121574 124651 006634 071331 102070
0266420 157504 160307 166330 074251 024520 114433 167273 030635
0266440 123614 106171 144160 010652 007365 026416 160716 100412
Q2EE4ED 026620 007210 000630 121224 076032 140764 000737 003276
Q2EES00 114060 042647 104475 110537 066716 104704 075447 112204
QZEES20 030374 144251 077734 01C1E7 002512 173CX6 025E31 1